需求人群:
"WorkflowLLM的目标受众是开发者、数据科学家和自动化工程师,特别是那些需要处理复杂工作流和自动化任务的人。该框架通过提供大规模的数据集和优化的模型,使得这些专业人员能够更有效地构建和部署基于LLM的解决方案,以实现业务流程的自动化。"
使用场景示例:
开发者使用WorkflowLLM来自动化复杂的软件开发流程。
数据科学家利用WorkflowLLM处理和分析大规模数据集。
自动化工程师使用WorkflowLLM来设计和优化工业自动化流程。
产品特色:
数据收集:从RoutineHub等平台收集现实世界的Apple快捷指令,并将其转录成Python风格的代码。
查询扩展:使用ChatGPT生成多样化和复杂的任务查询,以丰富工作流数据集。
工作流生成:训练有素的注释模型为合成查询生成工作流,然后进行质量检查,并与收集的样本合并,形成最终的数据集。
模型微调:使用WorkflowBench微调Llama-3.1-8B模型,创建WorkflowLlama,专门针对工作流编排任务优化。
实验结果:WorkflowLlama在编排复杂工作流和泛化到未见API方面表现出色。
数据预处理:将原始的Apple Shortcuts plist格式转换为抽象语法树(AST)表示,提高数据的可读性和实用性。
训练与推理:提供工具用于模型的训练和推理,支持日志记录和保存中间检查点。
使用教程:
1. 环境设置:确保Python 3.8已安装,并根据requirements.txt安装所有依赖。
2. 数据预处理:运行preprocess/Convert_ShortCut_to_Python.py脚本来将.plist或.shortcut文件转换为Python兼容格式。
3. 训练模型:执行scripts/train.sh脚本来开始训练模型,提供基础模型路径和数据路径作为参数。
4. 运行推理:模型训练完成后,使用scripts/infer.sh运行推理,提供训练好的模型检查点路径。
5. 查看结果:分析模型的输出,评估工作流编排的效果。
6. 微调和优化:根据实验结果对模型进行微调,以适应特定的工作流需求。
浏览量:4
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
数据驱动的框架,增强大型语言模型的工作流编排能力
WorkflowLLM是一个以数据为中心的框架,旨在增强大型语言模型(LLMs)在工作流编排方面的能力。核心是WorkflowBench,这是一个大规模的监督式微调数据集,包含来自83个应用、28个类别的1503个API的106763个样本。WorkflowLLM通过微调Llama-3.1-8B模型,创建了专门针对工作流编排任务优化的WorkflowLlama模型。实验结果表明,WorkflowLlama在编排复杂工作流方面表现出色,并且能够很好地泛化到未见过的API。
文本到图像生成的自适应工作流
ComfyGen 是一个专注于文本到图像生成的自适应工作流系统,它通过学习用户提示来自动化并定制有效的工作流。这项技术的出现,标志着从使用单一模型到结合多个专业组件的复杂工作流的转变,旨在提高图像生成的质量。ComfyGen 背后的主要优点是能够根据用户的文本提示自动调整工作流,以生成更高质量的图像,这对于需要生成特定风格或主题图像的用户来说非常重要。
突破大型语言模型限制的自动化框架
AutoDAN-Turbo是一个自动化的、无需人为干预的框架,旨在自动发现并实施多种策略,以突破大型语言模型(LLMs)的限制。该框架能够自动开发出多样的攻击策略,显著提高了攻击成功率,并且可以作为一个统一的框架整合现有的人为设计的越狱策略。AutoDAN-Turbo的重要性在于其能够提升LLMs在对抗环境中的安全性和可靠性,为红队评估工具提供了一种新的自动化方法。
自动化的生成式AI评估平台
AutoArena是一个自动化的生成式AI评估平台,专注于评估大型语言模型(LLMs)、检索增强生成(RAG)系统和生成式AI应用。它通过自动化的头对头判断来提供可信的评估,帮助用户快速、准确、经济地找到系统的最佳版本。该平台支持使用来自不同供应商的判断模型,如OpenAI、Anthropic等,也可以使用本地运行的开源权重判断模型。AutoArena还提供了Elo评分和置信区间计算,帮助用户将多次头对头投票转化为排行榜排名。此外,AutoArena支持自定义判断模型的微调,以实现更准确、特定领域的评估,并可以集成到持续集成(CI)流程中,以自动化评估生成式AI系统。
AI编程智能体语言,实现LLM与IDE之间的通信以自动化编程。
the Shire是一种AI编程智能体语言,旨在实现大型语言模型(LLM)与集成开发环境(IDE)之间的通信,以支持自动化编程。它起源于AutoDev项目,旨在为开发者提供一个AI驱动的IDE,包括DevIns,Shire的前身。Shire通过提供定制化的AI代理,使用户能够构建符合个人需求的AI驱动开发环境。
免费且快速的提示链生成器
PromptChainer 是一个旨在提高大型语言模型输出质量的工具,通过自动化提示链的生成,帮助用户将复杂任务分解成可管理的小步骤,从而获得更精确和高质量的结果。它特别适合需要多步骤和/或大量上下文和知识的任务。
70亿参数的大型多语言文本生成模型
Meta Llama 3.1是Meta公司推出的大型语言模型,拥有70亿个参数,支持8种语言的文本生成。该模型采用优化的Transformer架构,并通过监督式微调和人类反馈强化学习进一步优化,以符合人类对帮助性和安全性的偏好。模型在多语言对话使用案例中表现优异,超越了许多现有的开源和封闭聊天模型。
70B参数量的大型语言模型,专为工具使用优化
Llama-3-70B-Tool-Use是一种70B参数量的大型语言模型,专为高级工具使用和功能调用任务设计。该模型在Berkeley功能调用排行榜(BFCL)上的总体准确率达到90.76%,表现优于所有开源的70B语言模型。该模型优化了变换器架构,并通过完整的微调和直接偏好优化(DPO)在Llama 3 70B基础模型上进行了训练。输入为文本,输出为文本,增强了工具使用和功能调用的能力。尽管其主要用途是工具使用和功能调用,但在一般知识或开放式任务中,可能更适用通用语言模型。该模型可能在某些情况下产生不准确或有偏见的内容,用户应注意实现适合其特定用例的适当安全措施。该模型对温度和top_p采样配置非常敏感。
低代码多代理系统框架
Praison AI 是一个低代码的集中式框架,旨在简化各种大型语言模型(LLM)应用的多代理系统的创建和编排。它强调易用性、可定制性和人机交互。Praison AI 利用 AutoGen 和 CrewAI 或其他代理框架,通过预定义的角色和任务来实现复杂的自动化任务。用户可以通过命令行界面或用户界面与代理进行交互,创建自定义工具,并通过多种方式扩展其功能。
定制化大型语言模型的专业微调工具
Expert Specialized Fine-Tuning (ESFT) 是一种针对具有专家混合(MoE)架构的大型语言模型(LLMs)的高效定制化微调方法。它通过仅调整与任务相关的部分来优化模型性能,提高效率,同时减少资源和存储的使用。
专为角色扮演优化的大型语言模型
Higgs-Llama-3-70B是一个基于Meta-Llama-3-70B的后训练模型,特别针对角色扮演进行了优化,同时在通用领域指令执行和推理方面保持竞争力。该模型通过监督式微调,结合人工标注者和私有大型语言模型构建偏好对,进行迭代偏好优化以对齐模型行为,使其更贴近系统消息。与其它指令型模型相比,Higgs模型更紧密地遵循其角色。
开源大型语言模型的托管、部署、构建和微调一站式解决方案。
AIKit 是一个开源工具,旨在简化大型语言模型(LLMs)的托管、部署、构建和微调过程。它提供了与OpenAI API兼容的REST API,支持多种推理能力和格式,使用户可以使用任何兼容的客户端发送请求。此外,AIKit 还提供了一个可扩展的微调接口,支持Unsloth,为用户提供快速、内存高效且易于使用的微调体验。
使用大型语言模型(LLMs)进行数据清洗和整理的Python库。
databonsai是一个Python库,利用大型语言模型(LLMs)执行数据清洗任务。它提供了一系列工具,包括数据分类、转换和提取,以及对LLM输出的验证,支持批量处理以节省令牌,并且具备重试逻辑以处理速率限制和瞬时错误。
一款基于生物医学数据的8亿参数大型语言模型
Llama-3[8B] Meditron V1.0是一款专为生物医学领域设计的8亿参数的大型语言模型(LLM),在Meta发布Llama-3后24小时内完成微调。该模型在MedQA和MedMCQA等标准基准测试中超越了同参数级别的所有现有开放模型,并且接近70B参数级别医学领域领先的开放模型Llama-2[70B]-Meditron的性能。该工作展示了开放基础模型的创新潜力,是确保资源匮乏地区公平参与访问该技术更大倡议的一部分。
轻量级AI代理,基于开源模型的智能助手
AIlice是一个轻量级的AI代理,旨在创建一个类似于JARVIS的自包含人工智能助手。它通过构建一个以大型语言模型(LLM)为核心的“文本计算机”来实现这一目标。AIlice在主题研究、编码、系统管理、文献综述以及超越这些基本能力的复杂混合任务方面表现出色。AIlice利用GPT-4在日常生活中的任务中达到了近乎完美的性能,并正在利用最新的开源模型迈向实际应用。
大型语言模型角色扮演框架
RoleLLM是一个角色扮演框架,用于构建和评估大型语言模型的角色扮演能力。它包括四个阶段:角色概要构建、基于上下文的指令生成、使用GPT进行角色提示和基于角色的指令调整。通过Context-Instruct和RoleGPT,我们创建了RoleBench,这是一个系统化和细粒度的角色级别基准数据集,包含168,093个样本。此外,RoCIT在RoleBench上产生了RoleLLaMA(英语)和RoleGLM(中文),显著提高了角色扮演能力,甚至与使用GPT-4的RoleGPT取得了可比较的结果。
用简单语言指令实现自动化
Neural Wave是一款基于生成式人工智能技术的自动化工具,通过简单的语言指令,使任何企业都能够轻松实现自动化任务,无需昂贵的技术专业知识。我们的自定义大型语言模型(LLM)可以在任何软件应用程序上自动化任何任务(具有或不具有API),并处理任何结构化和完全非结构化的文档。我们的工具不需要任何RPA开发技能或技术专业知识,任何用户都可以通过简单的语言解释任务来自动化任何任务,无需技术技能。
Qwen2.5-Coder系列的1.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、代码推理和代码修复而设计。基于强大的Qwen2.5,通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此模型是1.5B参数的指令调优版本,采用GGUF格式,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
竞争对手特征智能分析工具
Sharbo是一个利用人工智能技术,帮助用户分析、比较并跟踪竞争对手产品特征的平台。它允许用户通过自动化的特征比较分析,定制化的产品比较页面,以及实时同步的竞争对手情报,来捕捉市场份额并促进业务增长。Sharbo的主要优点在于节省时间、提供深度洞察以及优化转化率。产品背景信息显示,Sharbo旨在通过自动化和定制化服务,让用户在激烈的市场竞争中保持领先。
124B参数的多模态大型语言模型
Pixtral-Large-Instruct-2411是由Mistral AI研发的124B参数的大型多模态模型,基于Mistral Large 2构建,展现出前沿级别的图像理解能力。该模型不仅能够理解文档、图表和自然图像,同时保持了Mistral Large 2在文本理解方面的领先地位。它在MathVista、DocVQA、VQAv2等数据集上达到了最先进的性能,是科研和商业应用的强大工具。
前沿AI技术,您的智能工作助手。
Mistral AI 提供的 le Chat 是一个免费的生成性AI工作助手,旨在通过前沿的AI技术提升人类的工作效率和创造力。le Chat 结合了搜索、视觉、创意、编码等多种功能,为用户提供了一个多功能的智能平台。它不仅能够进行网络搜索并引用来源,还拥有创意画布、文档和图像理解、图像生成等功能,并且支持任务自动化。Mistral AI 的使命是将前沿AI技术交到用户手中,让用户决定如何利用这些高级AI能力。目前,所有这些功能都以免费试用的形式提供,未来将推出更高级的服务保证。
Notion Mail是Notion推出的电子邮件服务。
Notion Mail是Notion推出的电子邮件服务,它集成了Notion的多种功能,如AI助理、日程安排、自定义视图等,旨在为用户提供一个简洁、高效、个性化的邮件管理体验。Notion Mail的设计理念是打破传统邮箱的束缚,通过现代化的设计和智能化的功能,让用户的工作和沟通更加流畅。产品预计将在2025年初正式发布,并将与Google和Gmail账户无缝集成。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
企业团队的先进自然语言DevOps平台
SRE.ai AI DevOps Agents是一个由顶尖AI机构工程师打造,并得到顶级投资者支持的先进自然语言DevOps平台。该平台通过AI代理增强团队,实现任何工作流程的定制化,提供前所未有的自动化和速度。它支持快速部署和回退,能够在开发周期早期识别和解决合并、依赖和集成冲突,确保更快速、更安全的发布。此外,它还能通过模拟和影响报告提前获得发布洞察,实现真正全面的自动化,并与整个技术栈深度集成,保护数据免受损失,并提供无缝备份和灾难恢复方案。
AI驱动的医疗通信助手,自动化电话和短信沟通。
Hello Patient是一个AI驱动的医疗通信平台,旨在通过自动化电话和短信沟通来提高医疗服务效率。该平台通过集成EHR、CRM和PMS系统,确保在正确的时间进行一致性和符合脚本的电话和短信沟通,从而提升患者忠诚度和医疗服务质量。产品背景信息显示,Hello Patient致力于减轻医疗工作者的工作负担,通过AI技术提高患者互动的及时性和一致性,同时降低运营成本。
一站式开源高质量数据提取工具,将PDF转换成Markdown和JSON格式。
MinerU是一个开源工具,专注于将PDF文件转换成机器可读的格式,如Markdown和JSON,便于内容的提取和进一步处理。它在科学文献中解决符号转换问题,支持多种输出格式,并兼容多种操作系统。MinerU的主要优点包括去除页眉、页脚、脚注等,保持文档原有结构,自动识别和转换文档中的公式和表格,支持OCR功能,并且支持多达84种语言的检测和识别。
© 2024 AIbase 备案号:闽ICP备08105208号-14