需求人群:
"vLLM的目标受众主要是需要进行大型语言模型推理和提供服务的开发者和企业。它适合于那些需要快速、高效地部署和运行大型语言模型的应用场景,如自然语言处理、机器翻译、文本生成等。"
使用场景示例:
使用vLLM部署一个聊天机器人,提供自然语言交互服务
集成vLLM到一个机器翻译服务中,提高翻译速度和效率
使用vLLM进行文本生成,如自动撰写新闻报道或社交媒体内容
产品特色:
支持与HuggingFace模型的无缝集成
提供高吞吐量的服务,支持多种解码算法
支持张量并行性,适用于分布式推理
支持流式输出,提高服务效率
兼容OpenAI API服务器,方便集成现有系统
支持NVIDIA和AMD GPU,提高硬件兼容性
使用教程:
1. 安装vLLM库及其依赖项
2. 根据文档配置环境变量和使用统计收集
3. 选择并集成所需的模型
4. 配置解码算法和性能调优参数
5. 编写代码实现推理服务,包括请求处理和响应生成
6. 使用Docker部署vLLM服务,确保服务的稳定性和可扩展性
7. 监控生产指标,优化服务性能
浏览量:89
最新流量情况
月访问量
456.69k
平均访问时长
00:04:17
每次访问页数
4.21
跳出率
46.18%
流量来源
直接访问
44.33%
自然搜索
39.74%
邮件
0.03%
外链引荐
14.84%
社交媒体
0.84%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
39.77%
印度
4.19%
韩国
6.70%
新加坡
3.67%
美国
15.25%
高效的 Intel GPU 上的 LLM 推理解决方案
这是一种在 Intel GPU 上实现的高效的 LLM 推理解决方案。通过简化 LLM 解码器层、使用分段 KV 缓存策略和自定义的 Scaled-Dot-Product-Attention 内核,该解决方案在 Intel GPU 上相比标准的 HuggingFace 实现可实现高达 7 倍的令牌延迟降低和 27 倍的吞吐量提升。详细功能、优势、定价和定位等信息请参考官方网站。
快速易用的LLM推理和服务平台
vLLM是一个为大型语言模型(LLM)推理和提供服务的快速、易用且高效的库。它通过使用最新的服务吞吐量技术、高效的内存管理、连续批处理请求、CUDA/HIP图快速模型执行、量化技术、优化的CUDA内核等,提供了高性能的推理服务。vLLM支持与流行的HuggingFace模型无缝集成,支持多种解码算法,包括并行采样、束搜索等,支持张量并行性,适用于分布式推理,支持流式输出,并兼容OpenAI API服务器。此外,vLLM还支持NVIDIA和AMD GPU,以及实验性的前缀缓存和多lora支持。
打破LLM推理的顺序依赖性
Lookahead Decoding是一种新的推理方法,用于打破LLM推理的顺序依赖性,提高推理效率。用户可以通过导入Lookahead Decoding库,使用Lookahead Decoding改进自己的代码。Lookahead Decoding目前只支持LLaMA和Greedy Search两种模型。
无限令牌,无限制,成本效益高的LLM推理API平台。
Awan LLM是一个提供无限令牌、无限制、成本效益高的LLM(大型语言模型)推理API平台,专为高级用户和开发者设计。它允许用户无限制地发送和接收令牌,直到模型的上下文限制,并且使用LLM模型时没有任何约束或审查。用户只需按月付费,而无需按令牌付费,这大大降低了成本。Awan LLM拥有自己的数据中心和GPU,因此能够提供这种服务。此外,Awan LLM不记录任何提示或生成内容,保护用户隐私。
NVIDIA GPU上加速LLM推理的创新技术
ReDrafter是一种新颖的推测性解码方法,通过结合RNN草稿模型和动态树注意力机制,显著提高了大型语言模型(LLM)在NVIDIA GPU上的推理速度。这项技术通过加速LLM的token生成,减少了用户可能经历的延迟,同时减少了GPU的使用和能源消耗。ReDrafter由Apple机器学习研究团队开发,并与NVIDIA合作集成到NVIDIA TensorRT-LLM推理加速框架中,为使用NVIDIA GPU的机器学习开发者提供了更快的token生成能力。
数学推理LLM
MathCoder是一款基于开源语言模型的数学推理工具,通过fine-tune模型和生成高质量的数据集,实现了自然语言、代码和执行结果的交替,提高了数学推理能力。MathCoder模型在MATH和GSM8K数据集上取得了最新的最高分数,远远超过其他开源替代品。MathCoder模型不仅在GSM8K和MATH上超过了ChatGPT-3.5和PaLM-2,还在竞赛级别的MATH数据集上超过了GPT-4。
领先的LLM服务提供平台
Mooncake是Kimi的服务平台,由Moonshot AI提供,是一个领先的大型语言模型(LLM)服务。它采用了以KVCache为中心的解耦架构,通过分离预填充(prefill)和解码(decoding)集群,以及利用GPU集群中未充分利用的CPU、DRAM和SSD资源来实现KVCache的解耦缓存。Mooncake的核心是其KVCache中心调度器,它在确保满足延迟相关的服务级别目标(SLOs)要求的同时,平衡最大化整体有效吞吐量。与传统研究不同,Mooncake面对的是高度过载的场景,为此开发了基于预测的早期拒绝策略。实验表明,Mooncake在长上下文场景中表现出色,与基线方法相比,在某些模拟场景中吞吐量可提高525%,同时遵守SLOs。在实际工作负载下,Mooncake的创新架构使Kimi能够处理75%以上的请求。
比较各种大型语言模型(LLM)的定价信息
LLM Pricing是一个聚合并比较各种大型语言模型(LLMs)定价信息的网站,这些模型由官方AI提供商和云服务供应商提供。用户可以在这里找到最适合其项目的语言模型定价。
使用简单、原始的 C/CUDA 进行 LLM 训练
karpathy/llm.c 是一个使用简单的 C/CUDA 实现 LLM 训练的项目。它旨在提供一个干净、简单的参考实现,同时也包含了更优化的版本,可以接近 PyTorch 的性能,但代码和依赖大大减少。目前正在开发直接的 CUDA 实现、使用 SIMD 指令优化 CPU 版本以及支持更多现代架构如 Llama2、Gemma 等。
扩展LLM上下文窗口
LLM Context Extender是一款旨在扩展大型语言模型(LLMs)上下文窗口的工具。它通过调整RoPE的基础频率和缩放注意力logits的方式,帮助LLMs有效适应更大的上下文窗口。该工具在精细调整性能和稳健性方面验证了其方法的优越性,并展示了在仅有100个样本和6个训练步骤的情况下,将LLaMA-2-7B-Chat的上下文窗口扩展到16,384的非凡效率。此外,还探讨了数据组成和训练课程如何影响特定下游任务的上下文窗口扩展,建议以长对话进行LLMs的精细调整作为良好的起点。
一个为LLM生成Git提交信息的插件
llm-commit 是一个为 LLM(Large Language Model)设计的插件,用于生成 Git 提交信息。该插件通过分析 Git 的暂存区差异,利用 LLM 的语言生成能力,自动生成简洁且有意义的提交信息。它不仅提高了开发者的提交效率,还确保了提交信息的质量和一致性。该插件适用于任何使用 Git 和 LLM 的开发环境,免费开源,易于安装和使用。
增强LLM推理能力的ReFT
ReFT是一种增强大型语言模型(LLMs)推理能力的简单而有效的方法。它首先通过监督微调(SFT)对模型进行预热,然后使用在线强化学习,具体来说是本文中的PPO算法,进一步微调模型。ReFT通过自动对给定问题进行大量推理路径的采样,并从真实答案中自然地得出奖励,从而显著优于SFT。ReFT的性能可能通过结合推理时策略(如多数投票和重新排名)进一步提升。需要注意的是,ReFT通过学习与SFT相同的训练问题而获得改进,而无需依赖额外或增强的训练问题。这表明ReFT具有更强的泛化能力。
构建LLM应用的开发平台
LLM Spark是一个开发平台,可用于构建基于LLM的应用程序。它提供多个LLM的快速测试、版本控制、可观察性、协作、多个LLM支持等功能。LLM Spark可轻松构建AI聊天机器人、虚拟助手等智能应用程序,并通过与提供商密钥集成,实现卓越性能。它还提供了GPT驱动的模板,加速了各种AI应用程序的创建,同时支持从零开始定制项目。LLM Spark还支持无缝上传数据集,以增强AI应用程序的功能。通过LLM Spark的全面日志和分析,可以比较GPT结果、迭代和部署智能AI应用程序。它还支持多个模型同时测试,保存提示版本和历史记录,轻松协作,以及基于意义而不仅仅是关键字的强大搜索功能。此外,LLM Spark还支持将外部数据集集成到LLM中,并符合GDPR合规要求,确保数据安全和隐私保护。
基于ComfyUI前端开发的LLM工作流节点集合
ComfyUI LLM Party旨在基于ComfyUI前端开发一套完整的LLM工作流节点集合,使用户能够快速便捷地构建自己的LLM工作流,并轻松地将它们集成到现有的图像工作流中。
将GitHub链接转换为适合LLM的格式
GitHub to LLM Converter是一个在线工具,旨在帮助用户将GitHub上的项目、文件或文件夹链接转换成适合大型语言模型(LLM)处理的格式。这一工具对于需要处理大量代码或文档数据的开发者和研究人员来说至关重要,因为它简化了数据准备过程,使得这些数据可以被更高效地用于机器学习或自然语言处理任务。该工具由Skirano开发,提供了一个简洁的用户界面,用户只需输入GitHub链接,即可一键转换,极大地提高了工作效率。
免费开源AI模型推理服务
Tost AI是一个免费、非盈利、开源的服务,它为最新的AI论文提供推理服务,使用非盈利GPU集群。Tost AI不存储任何推理数据,所有数据在12小时内过期。此外,Tost AI提供将数据发送到Discord频道的选项。每个账户每天提供100个免费钱包余额,如果希望每天获得1100个钱包余额,可以订阅GitHub赞助者或Patreon。Tost AI将演示的所有利润都发送给论文的第一作者,其预算由公司和个人赞助者支持。
Azure AI Studio提供的语音服务
Azure AI Studio是微软Azure提供的一套人工智能服务,其中包括语音服务。这些服务可能包括语音识别、语音合成、语音翻译等功能,帮助开发者在他们的应用程序中集成语音相关的智能功能。
高效为大型语言模型提供服务
FP6-LLM是一种用于大型语言模型的全新支持方案,通过六位量化(FP6)有效地减小了模型大小,并在各种应用中始终保持模型质量。我们提出了TC-FPx,这是第一个完整的GPU内核设计方案,统一支持各种量化位宽的浮点权重。我们将TC-FPx内核集成到现有推理系统中,为量化的LLM推理提供了全新的端到端支持(称为FP6-LLM),实现了推理成本和模型质量之间更好的权衡。实验证明,FP6-LLM使得使用单个GPU进行LLaMA-70b推理成为可能,实现的规范化推理吞吐量比FP16基准高1.69倍至2.65倍。
DeepSeek-V3/R1 推理系统是一个高性能的分布式推理架构,专为大规模 AI 模型优化设计。
DeepSeek-V3/R1 推理系统是 DeepSeek 团队开发的高性能推理架构,旨在优化大规模稀疏模型的推理效率。它通过跨节点专家并行(EP)技术,显著提升 GPU 矩阵计算效率,降低延迟。该系统采用双批量重叠策略和多级负载均衡机制,确保在大规模分布式环境中高效运行。其主要优点包括高吞吐量、低延迟和优化的资源利用率,适用于高性能计算和 AI 推理场景。
为LLM训练和推理生成网站整合文本文件的工具
LLMs.txt生成器是一个由Firecrawl提供支持的在线工具,旨在帮助用户从网站生成用于LLM训练和推理的整合文本文件。它通过整合网页内容,为训练大型语言模型提供高质量的文本数据,从而提高模型的性能和准确性。该工具的主要优点是操作简单、高效,能够快速生成所需的文本文件。它主要面向需要大量文本数据进行模型训练的开发者和研究人员,为他们提供了一种便捷的解决方案。
一个用于LLM预训练的高效网络爬虫工具,专注于高效爬取高质量网页数据。
Crawl4LLM是一个开源的网络爬虫项目,旨在为大型语言模型(LLM)的预训练提供高效的数据爬取解决方案。它通过智能选择和爬取网页数据,帮助研究人员和开发者获取高质量的训练语料。该工具支持多种文档评分方法,能够根据配置灵活调整爬取策略,以满足不同的预训练需求。项目基于Python开发,具有良好的扩展性和易用性,适合在学术研究和工业应用中使用。
先进的代码优化和编译器推理的大型语言模型。
LLM Compiler-7b是Meta开发的一款专注于代码优化和编译器推理的大型语言模型。它基于Code Llama模型,通过深度学习优化代码,支持编译器中间表示、汇编语言和优化的理解。此模型在减少代码大小和从汇编到编译器中间表示的反编译方面展现出卓越的性能,是编译器研究人员和工程师的有力工具。
一个关于大型语言模型(LLM)后训练方法的教程、调查和指南资源库。
Awesome-LLM-Post-training 是一个专注于大型语言模型(LLM)后训练方法的资源库。它提供了关于 LLM 后训练的深入研究,包括教程、调查和指南。该资源库基于论文《LLM Post-Training: A Deep Dive into Reasoning Large Language Models》,旨在帮助研究人员和开发者更好地理解和应用 LLM 后训练技术。该资源库免费开放,适合学术研究和工业应用。
3D可视化的GPT-style LLM
LLM Visualization项目显示了一个GPT-style网络的3D模型。也就是OpenAI的GPT-2、GPT-3(可能还有GPT-4)中使用的网络拓扑。第一个显示工作权重的网络是一个小型网络,对由字母A、B和C组成的小列表进行排序。这是Andrej Karpathy的minGPT实现中的演示示例模型。渲染器还支持可视化任意大小的网络,并且与较小的gpt2大小一起工作,尽管权重没有被下载(它有数百MB)。CPU Simulation项目运行2D原理数字电路,具有完整的编辑器。意图是添加一些演练,展示诸如:如何构建一个简单的RISC-V CPU;构成部分下至门级:指令解码、ALU、加法等;更高级的CPU思想,如各种级别的流水线、缓存等。
LLM应用开发者平台
LangSmith是一个统一的DevOps平台,用于开发、协作、测试、部署和监控LLM应用程序。它支持LLM应用程序开发生命周期的所有阶段,为构建LLM应用提供端到端的解决方案。主要功能包括:链路追踪、提示工具、数据集、自动评估、线上部署等。适用于构建基于LLM的AI助手、 ChatGPT应用的开发者。
LLM prompt测试库
promptfoo是一个用于评估LLM prompt质量和进行测试的库。它能够帮助您创建测试用例,设置评估指标,并与现有的测试和CI流程集成。promptfoo还提供了一个Web Viewer,让您可以轻松地比较不同的prompt和模型输出。它被用于服务超过1000万用户的LLM应用程序。
用于记录和测试LLM提示的MLops工具
Prompt Joy是一个用于帮助理解和调试LLM(大语言模型)提示的工具。主要功能包括日志记录和分割测试。日志记录可以记录LLM的请求与响应,便于检查输出结果。分割测试可以轻松进行A/B测试,找出效果最佳的提示。它与具体的LLM解耦,可以配合OpenAI、Anthropic等LLM使用。它提供了日志和分割测试的API。采用Node.js+PostgreSQL构建。
© 2025 AIbase 备案号:闽ICP备08105208号-14