需求人群:
"Ultravox的目标受众包括需要处理语音和文本数据的开发者和企业,如语音识别、语音翻译、语音分析等领域的专业用户。该产品因其多模态处理能力和高效率的训练方法,特别适合需要快速、准确地处理和生成语音及文本信息的用户。"
使用场景示例:
- 作为语音代理,处理用户的语音指令。
- 进行语音到语音的翻译,帮助跨语言沟通。
- 分析语音音频,提取关键信息,用于安全监控或客户服务。
产品特色:
- 语音和文本输入处理:能够同时处理语音和文本输入,适用于多种应用场景。
- 音频嵌入替换:使用<|audio|>伪标记将输入音频转换为嵌入,提高模型的多模态处理能力。
- 语音到语音翻译:适用于语音翻译,分析语音音频等场景。
- 模型生成文本:基于合并的嵌入输入生成输出文本。
- 未来支持语义和声学音频标记:计划在未来版本中支持生成语义和声学音频标记,进一步扩展模型功能。
- 知识蒸馏损失训练:使用知识蒸馏损失进行训练,使Ultravox模型尝试匹配基于文本的Mistral骨干的logits。
- 混合精度训练:采用BF16混合精度训练,提高训练效率。
使用教程:
1. 安装必要的库:使用pip安装transformers、peft和librosa库。
2. 导入库:在代码中导入transformers、numpy和librosa库。
3. 加载模型:使用transformers.pipeline加载'fixie-ai/ultravox-v0_4_1-mistral-nemo'模型。
4. 准备音频输入:使用librosa.load加载音频文件,并获取音频数据和采样率。
5. 定义对话轮次:创建一个包含系统角色和内容的对话轮次列表。
6. 调用模型:将音频数据、对话轮次和采样率作为参数,调用模型生成输出文本。
7. 获取结果:模型将生成的文本作为输出,可以用于进一步的处理或显示。
浏览量:40
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
语音转文字,支持实时语音识别、录音文件识别等
腾讯云语音识别(ASR)为开发者提供语音转文字服务的最佳体验。语音识别服务具备识别准确率高、接入便捷、性能稳定等特点。腾讯云语音识别服务开放实时语音识别、一句话识别和录音文件识别三种服务形式,满足不同类型开发者需求。技术先进,性价比高,多语种支持,适用于客服、会议、法庭等多场景。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
多模态语音大型语言模型
ultravox-v0_4_1-mistral-nemo是一个基于预训练的Mistral-Nemo-Instruct-2407和whisper-large-v3-turbo的多模态语音大型语言模型(LLM)。该模型能够同时处理语音和文本输入,例如,一个文本系统提示和一个语音用户消息。Ultravox通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以输入到声码器中产生语音输出。该模型由Fixie.ai开发,采用MIT许可。
一款基于多模态模型的语音翻译产品,支持近100种语言的自动语音识别、语音翻译、文本翻译、语音合成等功能。
SeamlessM4T是一款基于多模态模型的语音翻译产品,支持近100种语言的自动语音识别、语音翻译、文本翻译、语音合成等功能。该产品采用了全新的多任务UnitY模型架构,能够直接生成翻译文本和语音。SeamlessM4T的自我监督语音编码器w2v-BERT 2.0通过分析数百万小时的多语言语音,学习如何在语音中找到结构和意义。该产品还提供了SONAR、SpeechLASER等多语言语音和文本数据集,以及fairseq2等序列建模工具包。SeamlessM4T的发布,标志着AI技术在实现语音翻译方面取得了重大突破。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
提供语音识别、语音合成等语音AI能力
依图语音开放平台为开发者提供语音识别、语音合成等语音AI能力,包括精准语音转文本、文本转语音合成、声纹识别、语音增强降噪等服务,支持不同场景下的语音交互应用开发。平台提供高效、灵活的语音AI能力接入方式,可轻松将语音技术应用于各类产品与业务场景。
多模态语言模型,融合文本和语音
Spirit LM是一个基础多模态语言模型,能够自由混合文本和语音。该模型基于一个7B预训练的文本语言模型,通过持续在文本和语音单元上训练来扩展到语音模式。语音和文本序列被串联为单个令牌流,并使用一个小的自动策划的语音-文本平行语料库,采用词级交错方法进行训练。Spirit LM有两个版本:基础版使用语音音素单元(HuBERT),而表达版除了音素单元外,还使用音高和风格单元来模拟表达性。对于两个版本,文本都使用子词BPE令牌进行编码。该模型不仅展现了文本模型的语义能力,还展现了语音模型的表达能力。此外,我们展示了Spirit LM能够在少量样本的情况下跨模态学习新任务(例如ASR、TTS、语音分类)。
智能语音旗舰应用,无障碍语言记录与交流。
汉王语音王App是汉王科技基于自研多模态天地大模型,自主研发的智能语音旗舰应用。它集AI语音记录、智能翻译与同声传译于一体,支持AI精准转写、拍录同步、话稿整理、智能总结及不间断实时翻译等功能。依托全栈AI技术,汉王语音王致力于帮助用户跨越语言障碍,提高办公、学习、会议、旅游等场景的效率和便捷性。
开源多模态大型语言模型,支持实时语音输入和流式音频输出。
Mini-Omni是一个开源的多模态大型语言模型,能够实现实时的语音输入和流式音频输出的对话能力。它具备实时语音到语音的对话功能,无需额外的ASR或TTS模型。此外,它还可以在思考的同时进行语音输出,支持文本和音频的同时生成。Mini-Omni通过'Audio-to-Text'和'Audio-to-Audio'的批量推理进一步增强性能。
声波 - 语音识别和翻译
SpeechPulse是一款语音识别和翻译软件。它使用OpenAI的Whisper语音到文本模型,实现实时的语音识别,支持多种语言。用户可以使用麦克风输入文字,也可以通过转录音视频文件进行语音识别和翻译。SpeechPulse可以在各种场景下使用,例如办公文档编辑、网页浏览、文件转录、视频字幕生成等。它具有极高的准确性和低延迟,并且完全离线使用。SpeechPulse提供免费版和付费版,付费版支持更多功能和更好的准确性。
使用自得语音技术,创造属于你的角色
自得语音技术可通过简单的步骤创造出属于你的角色。类似GPT,可生成与真人无异的语音片段,在情感、音色和语速等方面与真人一致。自得语音支持快速定制角色,只需要上传一段语音即可立即生成属于你的语音角色。无需下载软件,可在浏览器上完成语音生成。同时提供API接口,方便开发者集成到自己的产品中。商用用户可享受7x24小时的技术支持。
让应用通过语音与文本的转换实现智能交互。
Azure 认知服务语音是微软推出的一款语音识别与合成服务,支持超过100种语言和方言的语音转文本和文本转语音功能。它通过创建可处理特定术语、背景噪音和重音的自定义语音模型,提高听录的准确度。此外,该服务还支持实时语音转文本、语音翻译、文本转语音等功能,适用于多种商业场景,如字幕生成、通话后听录分析、视频翻译等。
多模态语言模型
SpeechGPT是一种多模态语言模型,具有内在的跨模态对话能力。它能够感知并生成多模态内容,遵循多模态人类指令。SpeechGPT-Gen是一种扩展了信息链的语音生成模型。SpeechAgents是一种具有多模态多代理系统的人类沟通模拟。SpeechTokenizer是一种统一的语音标记器,适用于语音语言模型。这些模型和数据集的发布日期和相关信息均可在官方网站上找到。
MinMo是一款多模态大型语言模型,用于无缝语音交互。
MinMo是阿里巴巴集团通义实验室开发的一款多模态大型语言模型,拥有约80亿参数,专注于实现无缝语音交互。它通过多个阶段的训练,包括语音到文本对齐、文本到语音对齐、语音到语音对齐和全双工交互对齐,在140万小时的多样化语音数据和广泛的语音任务上进行训练。MinMo在语音理解和生成的各种基准测试中达到了最先进的性能,同时保持了文本大型语言模型的能力,并支持全双工对话,即用户和系统之间的同时双向通信。此外,MinMo还提出了一种新颖且简单的语音解码器,在语音生成方面超越了以往的模型。MinMo的指令遵循能力得到了增强,支持根据用户指令控制语音生成,包括情感、方言和语速等细节,并模仿特定的声音。MinMo的语音到文本延迟约为100毫秒,全双工延迟理论上约为600毫秒,实际约为800毫秒。MinMo的开发旨在克服以往对齐多模态模型的主要限制,为用户提供更自然、流畅和人性化的语音交互体验。
最新多模态检查点,提升语音理解能力。
Llama3-s v0.2 是 Homebrew Computer Company 开发的多模态检查点,专注于提升语音理解能力。该模型通过早期融合语义标记的方式,利用社区反馈进行改进,以简化模型结构,提高压缩效率,并实现一致的语音特征提取。Llama3-s v0.2 在多个语音理解基准测试中表现稳定,并提供了实时演示,允许用户亲自体验其功能。尽管模型仍在早期开发阶段,存在一些限制,如对音频压缩敏感、无法处理超过10秒的音频等,但团队计划在未来更新中解决这些问题。
多模态大型语言模型
AnyGPT是一个统一的多模态大型语言模型,利用离散表示进行各种模态的统一处理,包括语音、文本、图像和音乐。AnyGPT可以在不改变当前大型语言模型架构或训练范式的情况下稳定训练。它完全依赖于数据级预处理,促进了新模态无缝集成到语言模型中,类似于新的语言的加入。我们构建了一个用于多模态对齐预训练的以文本为中心的多模态数据集。利用生成模型,我们合成了第一个大规模的任意到任意的多模态指令数据集。它由10.8万个多轮对话样例组成,多种模态交织在一起,因此使模型能够处理任意组合的多模态输入和输出。实验结果表明,AnyGPT能够促进任意到任意的多模态对话,同时在所有模态上达到与专用模型相当的性能,证明了离散表示可以有效且方便地在语言模型中统一多个模态。
高效自动语音识别模型
Whisper large-v3-turbo是OpenAI提出的一种先进的自动语音识别(ASR)和语音翻译模型。它在超过500万小时的标记数据上进行训练,能够在零样本设置中泛化到许多数据集和领域。该模型是Whisper large-v3的微调版本,解码层从32减少到4,以提高速度,但可能会略微降低质量。
实时语音翻译APP
speakSync是一个基于人工智能的实时语音翻译APP。它能够实现多种语言之间的即时翻译,支持语音转文本和文本转语音,采用了OpenAI的Whisper和GPT模型,实现了流畅准确的翻译效果。该APP专为旅行者、商务人士和语言学习者设计,简化了翻译流程,创建无障碍的跨语言交流环境。
在线语音合成与语音识别服务
TTSLabs是一款在线语音合成与语音识别服务,提供高质量、自然流畅的语音合成和准确可靠的语音识别功能。通过简单的API调用,用户可以将文字转化为真实的语音,并且可以将语音转化为文本。TTSLabs提供多种语音风格和多国语言的支持,具有快速响应、高效稳定的特点。价格灵活透明,适用于个人开发者和企业用户。
情感丰富的多模态语言模型
EMOVA(EMotionally Omni-present Voice Assistant)是一个多模态语言模型,它能够进行端到端的语音处理,同时保持领先的视觉-语言性能。该模型通过语义-声学解耦的语音分词器,实现了情感丰富的多模态对话,并在视觉-语言和语音基准测试中达到了最先进的性能。
MiniCPM-o 2.6是一个强大的多模态大型语言模型,适用于视觉、语音和多模态直播。
MiniCPM-o 2.6是MiniCPM-o系列中最新且功能最强大的模型。该模型基于SigLip-400M、Whisper-medium-300M、ChatTTS-200M和Qwen2.5-7B构建,拥有8B参数。它在视觉理解、语音交互和多模态直播方面表现出色,支持实时语音对话和多模态直播功能。该模型在开源社区中表现优异,超越了多个知名模型。其优势在于高效的推理速度、低延迟、低内存和功耗,能够在iPad等终端设备上高效支持多模态直播。此外,MiniCPM-o 2.6易于使用,支持多种使用方式,包括llama.cpp的CPU推理、int4和GGUF格式的量化模型、vLLM的高吞吐量推理等。
实时打字翻译软件,支持语音输入和多平台
Real-time-translation-typing 是一款集成了实时打字翻译、语音实时打字和翻译、LOL 语音打字功能的软件。它通过AutoHotkey技术实现,支持多种翻译API,如搜狗、百度、有道等,为用户提供了高效、便捷的翻译体验。软件适用于需要快速翻译文本和语音的商务人士、学生和游戏玩家。
构建智能多模态语音助手的端到端框架。
LiveKit Agents 是一个端到端框架,它使开发者能够构建能够通过语音、视频和数据通道与用户互动的智能多模态语音助手(AI代理)。它通过集成OpenAI的实时API和LiveKit的WebRTC基础设施,提供了创建语音助手的快速入门指南,包括语音识别(STT)、语言模型(LLM)和文本转语音(TTS)的流水线。此外,它还支持创建语音到语音代理、接听和响应来电、以及代表用户拨打电话的功能。
字节跳动自研大模型,提供多模态能力
豆包大模型是字节跳动推出的自研大模型,通过内部50+业务场景实践验证,每日万亿级tokens大使用量持续打磨,提供多模态能力,以优质模型效果为企业打造丰富的业务体验。产品家族包括多种模型,如通用模型、视频生成、文生图、图生图、同声传译等,满足不同业务需求。
联合语音转录和实体识别的先进模型
Whisper-NER是一个创新的模型,它允许同时进行语音转录和实体识别。该模型支持开放类型的命名实体识别(NER),能够识别多样化和不断演变的实体。Whisper-NER旨在作为自动语音识别(ASR)和NER下游任务的强大基础模型,并且可以在特定数据集上进行微调以提高性能。
实时语音翻译,跨语言沟通的桥梁。
StreamSpeech是一款基于多任务学习的实时语音到语音翻译模型。它通过统一框架同时学习翻译和同步策略,有效识别流式语音输入中的翻译时机,实现高质量的实时通信体验。该模型在CVSS基准测试中取得了领先的性能,并能提供低延迟的中间结果,如ASR或翻译结果。
© 2025 AIbase 备案号:闽ICP备08105208号-14