需求人群:
"用于聊天和问答场景"
产品特色:
基于 AI 反馈的强化学习
优化 LLM 的可用性和安全性
提供高质量的排名数据集和奖励模型
浏览量:50
增强 LLM 的可用性和安全性
Starling-7B 是一个由强化学习从 AI 反馈(RLAIF)训练的开放大型语言模型(LLM)。它通过我们的新 GPT-4 标记排序数据集 Nectar 和新的奖励训练和策略调优流程充分发挥了作用。Starling-7B 在使用 GPT-4 作为评委的 MT Bench 中得分为 8.09,在 MT-Bench 上超过了目前所有模型,除了 OpenAI 的 GPT-4 和 GPT-4 Turbo。我们在 HuggingFace 上发布了排名数据集 Nectar、奖励模型 Starling-RM-7B-alpha 和语言模型 Starling-LM-7B-alpha,以及 LMSYS Chatbot Arena 中的在线演示。请期待我们即将发布的代码和论文,其中将提供有关整个过程的更多详细信息。
与文档进行自然语言对话的Python应用
Chat With Your Docs 是一个Python应用程序,允许用户与多种文档格式(如PDF、网页和YouTube视频)进行对话。用户可以使用自然语言提问,应用程序将基于文档内容提供相关回答。该应用利用语言模型生成准确答案。请注意,应用仅回应与加载的文档相关的问题。
前沿语言模型,具有先进的推理能力。
Grok-2是xAI的前沿语言模型,具有最先进的推理能力。此次发布包括Grok家族的两个成员:Grok-2和Grok-2 mini。这两个模型现在都在𝕏平台上发布给Grok用户。Grok-2是Grok-1.5的重要进步,具有聊天、编程和推理方面的前沿能力。同时,xAI引入了Grok-2 mini,一个小巧但功能强大的Grok-2的兄弟模型。Grok-2的早期版本已经在LMSYS排行榜上以“sus-column-r”的名字进行了测试。它在整体Elo得分方面超过了Claude 3.5 Sonnet和GPT-4-Turbo。
多语言对话生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),支持8种语言,专为对话使用案例优化,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)来提高安全性和有用性。
在线聊天机器人竞技场,比较不同语言模型的表现。
LMSYS Chatbot Arena 是一个在线平台,旨在通过用户与匿名聊天机器人模型的互动,对大型语言模型(Large Language Models, LLMs)进行基准测试。该平台收集了超过70万次人类投票,计算出LLM的Elo排行榜,以确定谁是聊天机器人领域的冠军。平台提供了一个研究预览,具有有限的安全措施,可能生成不当内容,因此需要用户遵守特定的使用条款。
1.6亿参数稳定语言模型
Stable LM 2 1.6B是一个1.6亿参数的小型多语言稳定语言模型,支持英语、西班牙语、德语、意大利语、法语、葡萄牙语和荷兰语。该模型体积小、速度快,降低了硬件门槛,让更多开发者参与生成式AI生态系统。我们不仅发布预训练及调参版本,还首次发布预训练冷却前的最后检查点,包括优化器状态,以帮助开发者顺利进行微调和实验。
TOFU数据集为大型语言模型的虚构遗忘任务提供基准。
TOFU数据集包含根据不存在的200位作者虚构生成的问答对,用于评估大型语言模型在真实任务上的遗忘性能。该任务的目标是遗忘在各种遗忘集比例上经过微调的模型。该数据集采用问答格式,非常适合用于流行的聊天模型,如Llama2、Mistral或Qwen。但是,它也适用于任何其他大型语言模型。对应的代码库是针对Llama2聊天和Phi-1.5模型编写的,但可以轻松地适配到其他模型。
Google预计将推出的付费语言模型服务
Bard Advanced是Google预计将推出的语言模型服务,基于更强大的Gemini Ultra模型打造。用户需要通过订阅Google One获得Bard Advanced的访问权限。相比免费版Bard,Bard Advanced拥有更先进的数学和推理技能,能够更高质量地回答用户的问题,并支持自定义对话机器人的创建。Bard Advanced为用户提供更加智能和专业的语言生成服务。
使用Wikipedia数据抑制语言模型的幻觉
WikiChat利用Wikipedia和7个阶段的流程,确保其响应是事实性的。它可以抑制大型语言模型的误报,通过从Wikipedia检索数据来纠正语言模型的错误回复。具有命令行交互和Web界面。
人类级奖励设计算法,通过编码大型语言模型实现
Eureka是一种人类级奖励设计算法,通过编码大型语言模型实现。它利用最先进的语言模型(如GPT-4)的零样本生成、编写代码和上下文改进能力,对奖励代码进行进化优化。生成的奖励可以用于通过强化学习获得复杂的技能。Eureka生成的奖励函数在29个开源强化学习环境中,包括10种不同的机器人形态,优于人类专家设计的奖励函数。Eureka还能够灵活地改进奖励函数,以提高生成奖励的质量和安全性。通过与课程学习相结合,使用Eureka奖励函数,我们首次展示了一个模拟的Shadow Hand能够进行旋转笔的技巧,熟练地以快速的速度在圆圈中操纵笔。
云端AI聊天机器人服务
SymeChat是一个基于Llama2 7B语言模型的云端AI聊天机器人服务,能够以极低的成本为企业和开发者提供会话式AI能力,无需自行托管大型语言模型的基础设施成本。SymeChat利用Llama2 7B强大的自然语言理解和生成能力,为聊天机器人、虚拟助手等AI应用提供人类级别的对话技能。通过利用Llama2 7B云服务,SymeChat消除了客户购买昂贵GPU硬件或者维护升级神经网络的复杂性。客户只需根据每月使用情况付费,没有任何前期基础设施成本。我们的目标是通过经济实惠的选择普及AI访问,即使是小企业和非营利组织也能够以合理的成本为客户和社区提供有用的虚拟助手。
聪明语言模型,交互式对话
TalkGPT是一种聪明的语言模型,可以进行交互式对话。它可以回答各种问题,并提供智能的回应。通过使用查询示例,您可以充分利用它的潜力。TalkGPT提供了一种无缝的对话体验,让您可以与模型进行自然而流畅的交流。
知识共享的对话式AI平台
Dokko是一个革命性的知识管理平台,它通过先进的AI和自然语言理解技术,提供直观的聊天机器人界面,无缝连接团队和客户,促进轻松沟通和知识交流。Dokko通过集中化、直观的系统整合分散的数据源,使用自然、会话式的文本,解决了组织中信息孤岛的问题。产品的主要优点包括易于集成、自动化数据组织和集成、实时性能监控和优化等。Dokko支持多种大型语言模型(LLMs),允许用户根据特定需求选择最佳的AI引擎,并定制响应以反映组织的独特特性。
专为软件改进设计的开源大型语言模型。
Lingma SWE-GPT是一个开源的大型语言模型,专注于软件工程领域的任务,旨在提供智能化的开发支持。该模型基于Qwen系列基础模型,经过额外训练以增强其在复杂软件工程任务中的能力。它在软件工程智能代理的权威排行榜上表现出色,适合需要自动化软件改进的开发团队和研究人员。
人类中心语言模型和模拟器的领导者
Nous Research专注于开发以人为中心的语言模型和模拟器,致力于将AI系统与现实世界用户体验对齐。我们的主要研究领域包括模型架构、数据合成、微调和推理。我们优先开发开源、人类兼容的模型,挑战传统的封闭模型方法。
Nous Research推出的首款无限制AI聊天机器人
Nous Chat是AI研究组织Nous Research推出的首款面向用户的聊天机器人,它提供了对大型语言模型Hermes 3-70B的访问权限。Hermes 3-70B是Meta的Llama 3.1的一个变体,经过微调后,以ChatGPT等流行AI聊天工具的形式提供服务。该聊天机器人以其复古的设计语言和早期PC终端的字体和字符为特色,提供暗色和亮色模式供用户选择。尽管Nous Chat旨在允许用户部署和控制自己的AI模型,但它实际上设置了一些防护措施,包括禁止制造非法药物。此外,该模型的知识截止日期为2023年4月,因此在获取最新事件方面可能不如其他竞争对手有用。尽管如此,Nous Chat是一个有趣的实验,随着新功能的添加,它可能成为企业聊天机器人和AI模型的一个有吸引力的替代品。
开源的网页自动化库,支持任何大型语言模型(LLM)
browser-use是一个开源的网页自动化库,允许大型语言模型(LLM)与网站进行交互,通过简单的接口实现复杂的网页操作。该技术的主要优点包括对多种语言模型的通用支持、交互元素自动检测、多标签页管理、XPath提取、视觉模型支持等。它解决了传统网页自动化中的一些痛点,如动态内容处理、长任务解决等。browser-use以其灵活性和易用性,为开发者提供了一个强大的工具,以构建更加智能和自动化的网页交互体验。
一款通过纯语言模型实现的文本到语音合成模型
OuteTTS-0.1-350M是一款基于纯语言模型的文本到语音合成技术,它不需要外部适配器或复杂架构,通过精心设计的提示和音频标记实现高质量的语音合成。该模型基于LLaMa架构,使用350M参数,展示了直接使用语言模型进行语音合成的潜力。它通过三个步骤处理音频:使用WavTokenizer进行音频标记化、CTC强制对齐创建精确的单词到音频标记映射、以及遵循特定格式的结构化提示创建。OuteTTS的主要优点包括纯语言建模方法、声音克隆能力、与llama.cpp和GGUF格式的兼容性。
全新的站点搜索体验,提升客户服务效率。
Crisp 4是一个以异步通信为核心的客户服务平台,提供了全新的Inbox、设计、分析、AI功能和覆盖搜索小部件。它通过集成AI技术,优化了客户互动的每一个环节,帮助团队更清晰、高效地提供客户服务。Crisp 4的背景是随着在线业务的增长,企业需要更智能、更自动化的方式来处理客户咨询和支持请求,Crisp 4正是为了满足这一需求而设计的。产品定位于中大型企业,提供14天免费试用,之后为付费服务。
Meta 开发的子十亿参数语言模型,适用于设备端应用。
Meta 开发的自回归语言模型,采用优化架构,适合资源受限设备。优点多,如集成多种技术,支持零样本推理等,价格免费,面向自然语言处理研究人员和开发者。
高效优化的600M参数语言模型,专为设备端应用设计。
MobileLLM-600M是由Meta开发的自回归语言模型,采用了优化的Transformer架构,专为资源受限的设备端应用而设计。该模型集成了SwiGLU激活函数、深度薄架构、嵌入共享和分组查询注意力等关键技术。MobileLLM-600M在零样本常识推理任务上取得了显著的性能提升,与之前的125M/350M SoTA模型相比,分别提高了2.7%/4.3%的准确率。该模型的设计理念可扩展至更大模型,如MobileLLM-1B/1.5B,均取得了SoTA结果。
高效优化的子十亿参数语言模型,专为设备端应用设计
MobileLLM-350M是由Meta开发的自回归语言模型,采用优化的Transformer架构,专为设备端应用设计,以满足资源受限的环境。该模型整合了SwiGLU激活函数、深层薄架构、嵌入共享和分组查询注意力等关键技术,实现了在零样本常识推理任务上的显著准确率提升。MobileLLM-350M在保持较小模型尺寸的同时,提供了与更大模型相媲美的性能,是设备端自然语言处理应用的理想选择。
高效优化的小型语言模型,专为设备端应用设计。
MobileLLM-125M是由Meta开发的自动回归语言模型,它利用优化的变换器架构,专为资源受限的设备端应用而设计。该模型集成了包括SwiGLU激活函数、深度薄架构、嵌入共享和分组查询注意力等多项关键技术。MobileLLM-125M/350M在零样本常识推理任务上相较于前代125M/350M SoTA模型分别取得了2.7%和4.3%的准确率提升。该模型的设计理念可有效扩展到更大模型,MobileLLM-600M/1B/1.5B均取得了SoTA结果。
先进的编程、工具使用和推理能力的模型
Claude 3.5 Haiku是Anthropic公司推出的最新最快的模型,它在编程、工具使用和推理任务上表现出色,并且价格亲民。该模型在速度上与Claude 3 Haiku相似,但在各项技能上都有提升,甚至在许多智能基准测试上超越了上一代最大的模型Claude 3 Opus。Anthropic公司致力于AI的安全性,Claude 3.5 Haiku在开发过程中经过了多语言和政策领域的广泛安全评估,增强了处理敏感内容的能力。
优化的小型语言模型,适用于移动设备
MobileLLM是一种针对移动设备优化的小型语言模型,专注于设计少于十亿参数的高质量LLMs,以适应移动部署的实用性。与传统观念不同,该研究强调了模型架构在小型LLMs中的重要性。通过深度和薄型架构,结合嵌入共享和分组查询注意力机制,MobileLLM在准确性上取得了显著提升,并提出了一种不增加模型大小且延迟开销小的块级权重共享方法。此外,MobileLLM模型家族在聊天基准测试中显示出与之前小型模型相比的显著改进,并在API调用任务中接近LLaMA-v2 7B的正确性,突出了小型模型在普通设备用例中的能力。
衡量语言模型回答事实性问题能力的基准测试
SimpleQA是OpenAI发布的一个事实性基准测试,旨在衡量语言模型回答简短、寻求事实的问题的能力。它通过提供高正确性、多样性、挑战性和良好的研究者体验的数据集,帮助评估和提升语言模型的准确性和可靠性。这个基准测试对于训练能够产生事实正确响应的模型是一个重要的进步,有助于提高模型的可信度,并拓宽其应用范围。
高质量音频生成框架
AudioLM是由Google Research开发的一个框架,用于高质量音频生成,具有长期一致性。它将输入音频映射到离散标记序列,并将音频生成视为这一表示空间中的语言建模任务。AudioLM通过在大量原始音频波形上训练,学习生成自然且连贯的音频续篇,即使在没有文本或注释的情况下,也能生成语法和语义上合理的语音续篇,同时保持说话者的身份和韵律。此外,AudioLM还能生成连贯的钢琴音乐续篇,尽管它在训练时没有使用任何音乐的符号表示。
模块化仿人机器人,用于强化学习训练
Agibot X1是由Agibot开发的模块化仿人机器人,具有高自由度,基于Agibot开源框架AimRT作为中间件,并使用强化学习进行运动控制。该项目是Agibot X1使用的强化学习训练代码,可以与Agibot X1提供的推理软件结合用于真实机器人和模拟步行调试,或导入其他机器人模型进行训练。
利用大型语言模型(LLM)进行创新研究的智能代理
CoI-Agent是一个基于大型语言模型(LLM)的智能代理,旨在通过链式思维(Chain of Ideas)的方式革新研究领域的新想法开发。该模型通过整合和分析大量数据,为研究人员提供创新的思路和研究方向。它的重要性在于能够加速科研进程,提高研究效率,帮助研究人员在复杂的数据中发现新的模式和联系。CoI-Agent由DAMO-NLP-SG团队开发,是一个开源项目,可以免费使用。
多模态语言模型,融合文本和语音
Spirit LM是一个基础多模态语言模型,能够自由混合文本和语音。该模型基于一个7B预训练的文本语言模型,通过持续在文本和语音单元上训练来扩展到语音模式。语音和文本序列被串联为单个令牌流,并使用一个小的自动策划的语音-文本平行语料库,采用词级交错方法进行训练。Spirit LM有两个版本:基础版使用语音音素单元(HuBERT),而表达版除了音素单元外,还使用音高和风格单元来模拟表达性。对于两个版本,文本都使用子词BPE令牌进行编码。该模型不仅展现了文本模型的语义能力,还展现了语音模型的表达能力。此外,我们展示了Spirit LM能够在少量样本的情况下跨模态学习新任务(例如ASR、TTS、语音分类)。
© 2024 AIbase 备案号:闽ICP备08105208号-14