浏览量:51
最新流量情况
月访问量
177.84k
平均访问时长
00:22:13
每次访问页数
16.04
跳出率
33.18%
流量来源
直接访问
53.15%
自然搜索
35.98%
邮件
0.04%
外链引荐
9.67%
社交媒体
0.89%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
71.59%
意大利
2.58%
新加坡
2.98%
美国
2.59%
自动微分、并行加持,一次训练,可多场景部署
昇思MindSpore 是华为开源自研的 AI 框架,支持端边云全场景的深度学习训练推理,应用于计算机视觉、自然语言处理等 AI 领域。具备基于源码转换的通用自动微分、自动实现分布式并行训练、数据处理和图执行引擎等功能。框架开源,适用于数据科学家和算法工程师。
易用、灵活、高效的开源大模型应用开发框架。
Agently是一个开源的大模型应用开发框架,旨在帮助开发者快速构建基于大语言模型的AI agent原生应用。它通过提供一系列工具和接口,简化了与大型语言模型的交互过程,使得开发者可以更专注于业务逻辑的实现。Agently框架支持多种模型,易于安装和配置,具有高度的灵活性和扩展性。
生成式室内设计训练框架
StableDesign项目旨在为生成式室内设计提供数据集和训练方法。用户上传空房间图片和文字提示,生成装修效果图。通过爱彼迎数据下载、特征提取和ControlNet模型训练,结合图像处理和自然语言处理技术,提供新思路和方法。
实现零泡泡管道并行的调度策略
Zero Bubble Pipeline Parallelism是大规模分布式训练的关键组成部分之一,其效率受到管道泡沫的影响。我们引入了一种调度策略,成功实现了在同步训练语义下零管道泡沫。这一改进的关键思想是将反向计算分为两部分,一部分计算输入的梯度,另一部分计算参数的梯度。基于这一思想,我们手工设计了新颖的管道调度,明显优于基准方法。我们进一步开发了一种算法,根据特定模型配置和内存限制自动找到最佳调度。此外,为了真正实现零泡泡,我们引入了一种新颖的技术,在优化器步骤期间绕过同步。实验评估表明,我们的方法在类似内存限制下的吞吐量比1F1B调度高出了最多23%。当内存约束放宽时,这一数字可以进一步提高至31%。我们相信我们的结果标志着在发挥管道并行潜力方面迈出了重要的一步。
生成AI风险识别自动化框架
PyRIT是由Azure开发的Python风险识别工具,旨在帮助安全专业人员和机器学习工程师主动发现其生成AI系统中的风险。该工具自动化了AI红队任务,使操作者能够专注于更复杂和耗时的任务,同时能够识别安全和隐私危害。
提供一种新颖的视频到视频编辑框架,无需训练即可使用
AnyV2V是一个创新的视频到视频编辑框架,允许用户使用任何现成的图像编辑工具编辑视频的第一帧,然后使用现有的图像到视频生成模型进行图像到视频的重建。这种方法使得各种编辑任务变得简单,包括基于提示的编辑、样式转换、主题驱动的编辑和身份操纵。
一种用于V3/R1训练中计算与通信重叠的双向流水线并行算法。
DualPipe是一种创新的双向流水线并行算法,由DeepSeek-AI团队开发。该算法通过优化计算与通信的重叠,显著减少了流水线气泡,提高了训练效率。它在大规模分布式训练中表现出色,尤其适用于需要高效并行化的深度学习任务。DualPipe基于PyTorch开发,易于集成和扩展,适合需要高性能计算的开发者和研究人员使用。
提供多种预训练模型,支持多维度筛选,助力AI模型应用与开发。
该平台是一个专注于AI预训练模型的资源平台,整合了大量不同类型、规模和应用场景的预训练模型。其重要性在于为AI开发者和研究人员提供了便捷的模型获取渠道,降低了模型开发的门槛。主要优点包括模型分类细致、多维度筛选功能强大、信息展示详细且提供智能推荐。产品背景是随着AI技术的发展,对预训练模型的需求日益增长,平台应运而生。平台主要定位为AI模型资源平台,部分模型免费商用,部分可能需要付费,具体价格因模型而异。
高效的分布式数据并行框架,专为大型语言模型设计。
YaFSDP是一个分布式数据并行框架,专为与transformer类神经网络结构良好协作而设计。它在预训练大型语言模型(Large Language Models, LLMs)时比传统的FSDP快20%,并且在高内存压力条件下表现更佳。YaFSDP旨在减少通信和内存操作的开销。
高效全球分布式AI模型训练框架
PrimeIntellect-ai/prime是一个用于在互联网上高效、全球分布式训练AI模型的框架。它通过技术创新,实现了跨地域的AI模型训练,提高了计算资源的利用率,降低了训练成本,对于需要大规模计算资源的AI研究和应用开发具有重要意义。
利用随机微分方程进行语义图像反转和编辑
RF-Inversion是一个专注于图像生成和编辑的技术,它通过随机微分方程(SDE)来实现图像的反转和编辑。这项技术的主要优点在于它不需要额外的训练、潜在优化、提示调整或复杂的注意力处理器,即可实现高效的图像反转和编辑。RF-Inversion在零样本反转和编辑方面表现出色,超越了以往的工作,在笔画到图像合成和语义图像编辑方面,通过大规模人类评估确认了用户偏好。该技术背景信息显示,它由德克萨斯大学奥斯汀分校和谷歌的研究人员共同开发,得到了NSF资助和其他研究合作奖的支持。
小红书自动运营助手,AI智能评论、点赞、关注,一键提升账号活跃度。
自动薯是一款专为小红书博主设计的自动化运营工具。它利用AI技术实现智能评论、点赞和关注等功能,帮助用户提升账号活跃度和粉丝增长速度。其主要优点包括智能化运营、安全可控和便捷管理,能够大幅提升运营效率,降低人工成本。该产品主要面向小红书博主、MCN机构、运营团队和代运营机构等,适用于各种规模的账号运营需求。产品提供免费试用,之后需付费使用,价格为20元/月,半年付或一年付。
AI训练入门,超级易用的AI训练平台
训练面板是一个为初学者提供超级易用的AI训练平台。对于高级用户,我们提供可定制的设置。训练面板具有简洁直观的界面,使用户能够轻松地训练自己的AI模型。它支持各种机器学习算法和深度学习框架,包括TensorFlow和PyTorch等。通过训练面板,用户可以通过上传数据集、设置训练参数和监控训练进度来训练和优化自己的AI模型。训练面板还提供模型评估和预测功能,帮助用户评估模型的性能并进行预测。定价灵活,提供免费试用和付费订阅选项。
Cradle框架:用于控制计算机的多模态代理
Cradle框架旨在使基础模型能够通过与人类相同的通用接口(屏幕作为输入,键盘和鼠标操作作为输出)执行复杂的计算机任务。该框架在Red Dead Redemption II游戏中进行了案例研究,展示了其在复杂环境中的泛化和适应能力。
统一的深度学习训练框架
AXLearn是Apple基于JAX和XLA构建的深度学习库,采用面向对象的方式解决软件工程在大规模深度学习模型开发中的挑战。它的配置系统允许用户从可重用的构建块中组合模型,并与其他库(如Flax和Hugging Face transformers)集成。AXLearn旨在扩展训练规模,支持数百亿参数的模型在数千个加速器上高效训练,适合在公有云上部署。它还采用全局计算范式,允许用户描述全局虚拟计算机上的计算,而不是单个加速器。AXLearn支持广泛的应用,包括自然语言处理、计算机视觉和语音识别,并包含用于训练最先进模型的基线配置。
Apple官方机器学习模型训练框架
Create ML是一个Apple官方发布的机器学习模型训练框架,可以非常方便地在Mac设备上训练Core ML模型。它提供了图像、视频、文本等多种模型类型,用户只需要准备数据集和设置参数,就可以开始模型训练。Create ML还提供了Swift API,支持在iOS等平台进行模型训练。
YouTube自动配音功能,打破语言障碍。
YouTube自动配音功能是一项旨在消除语言障碍的技术,它通过自动将视频配音转换成不同语言,使得全球用户能够无障碍地享受来自世界各地的内容。这项技术特别适用于教育、信息分享以及文化交流等领域,它不仅提高了视频的可访问性,还促进了全球创作者和观众之间的互动。YouTube自动配音目前对YouTube合作伙伴计划中的数十万频道开放,并计划很快扩展到其他类型的内容。
一个用于专家并行负载均衡的开源算法,旨在优化多GPU环境下的专家分配和负载平衡。
Expert Parallelism Load Balancer (EPLB)是一种用于深度学习中专家并行(EP)的负载均衡算法。它通过冗余专家策略和启发式打包算法,确保不同GPU之间的负载平衡,同时利用组限制专家路由减少节点间数据流量。该算法对于大规模分布式训练具有重要意义,能够提高资源利用率和训练效率。
开源的先进语言模型后训练框架
Tülu 3是一系列开源的先进语言模型,它们经过后训练以适应更多的任务和用户。这些模型通过结合专有方法的部分细节、新颖技术和已建立的学术研究,实现了复杂的训练过程。Tülu 3的成功根植于精心的数据管理、严格的实验、创新的方法论和改进的训练基础设施。通过公开分享数据、配方和发现,Tülu 3旨在赋予社区探索新的和创新的后训练方法的能力。
高效并行音频生成技术
SoundStorm是由Google Research开发的一种音频生成技术,它通过并行生成音频令牌来大幅减少音频合成的时间。这项技术能够生成高质量、与语音和声学条件一致性高的音频,并且可以与文本到语义模型结合,控制说话内容、说话者声音和说话轮次,实现长文本的语音合成和自然对话的生成。SoundStorm的重要性在于它解决了传统自回归音频生成模型在处理长序列时推理速度慢的问题,提高了音频生成的效率和质量。
语言训练AI
Talkio AI是一款使用AI技术帮助您提高口语能力的终极语言训练应用。它提供个性化的口语练习,实时反馈和评估,以及丰富的学习资源。不论您是想提高英语、汉语或其他语言的口语能力,Talkio AI都能帮助您轻松实现目标。
xMode是一个AI图像训练平台,帮助用户训练和生成AI图像。
xMode是一个专注于AI图像训练的平台,用户可以利用其强大的算法和工具训练AI模型,快速生成高质量的图像内容。xMode的主要优点在于提供高效的训练和生成功能,背后支持先进的深度学习技术。该平台定位于为用户提供方便、快捷的AI图像训练解决方案。
现代 React 框架
Next.js 是一个用于构建现代 React 应用程序的框架。它提供了许多功能和优势,包括服务器渲染、静态生成、热模块替换等。Next.js 的定价根据使用情况而定,定位于开发人员和企业用户。
构建和训练大型语言模型的综合框架
DataComp-LM (DCLM) 是一个为构建和训练大型语言模型(LLMs)而设计的综合性框架,提供了标准化的语料库、基于open_lm框架的高效预训练配方,以及超过50种评估方法。DCLM 支持研究人员在不同的计算规模上实验不同的数据集构建策略,从411M到7B参数模型。DCLM 通过优化的数据集设计显著提高了模型性能,并且已经促成了多个高质量数据集的创建,这些数据集在不同规模上表现优异,超越了所有开放数据集。
基于线程的数据加载解决方案,加速AI模型训练。
SPDL(Scalable and Performant Data Loading)是由Meta Reality Labs开发的一种新的数据加载解决方案,旨在提高AI模型训练的效率。它采用基于线程的并行处理,相比传统的基于进程的解决方案,SPDL在普通Python解释器中实现了高吞吐量,并且消耗的计算资源更少。SPDL与Free-Threaded Python兼容,在禁用GIL的情况下,比启用GIL的FT Python实现更高的吞吐量。SPDL的主要优点包括高吞吐量、易于理解的性能、不封装预处理操作、不引入领域特定语言(DSL)、无缝集成异步工具、灵活性、简单直观以及容错性。SPDL的背景信息显示,随着模型规模的增长,对数据的计算需求也随之增加,而SPDL通过最大化GPU的利用,加快了模型训练的速度。
用于测试和开发AI代理的可扩展开源框架
Windows Agent Arena (WAA) 是一个专注于Windows操作系统的可扩展、开源框架,用于测试和开发能够使用语言模型在PC上进行推理、规划和行动的AI代理。它通过模拟真实的Windows环境,允许代理自由操作,并使用与人类用户相同的应用程序、工具和网络浏览器来解决任务。WAA通过Azure实现可扩展性和并行化,能够在短短20分钟内完成完整的基准测试评估。
AI个人训练师,提供健康洞察和日常训练指导
PeakWatch是一款AI个人训练师应用,通过个性化的健康洞察和日常训练指导,帮助用户优化训练计划,提升运动表现,并关注睡眠质量。它通过深度分析用户的运动数据,提供训练负荷平衡建议,以预防过度训练和训练不足。PeakWatch的背景信息显示,该产品致力于通过科技提升人们的健康和运动表现,其价格定位为免费试用,吸引用户下载体验。
动态记忆框架,支持大型语言模型和代理。
RedCache-AI是一个为大型语言模型和代理设计的动态记忆框架,它允许开发者构建从AI驱动的约会应用到医疗诊断平台等广泛的应用。它解决了现有解决方案昂贵、封闭源代码或缺乏对外部依赖的广泛支持的问题。
© 2025 AIbase 备案号:闽ICP备08105208号-14