浏览量:67
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
用于生成图像与语言的多模态模型
MiniGPT-5是一个基于生成式vokens的交错式视觉语言生成技术,能够同时生成文字叙述和相关的图像。它采用两阶段训练策略,第一阶段进行无描述的多模态生成训练,第二阶段进行多模态学习。该模型在多模态对话生成任务上取得了良好效果。
多语言对话生成模型
Meta Llama 3.1系列模型是一套预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种规模的模型,专为多语言对话使用案例优化,性能优于许多开源和闭源聊天模型。
AIWaves是一个AI软件公司,提供AI产品和服务。
AIWaves是一个总部位于杭州的AI初创公司,专注于将大型语言模型应用于互联网场景。公司以「实现AGI,让人类生活变得更美好」作为长期使命,以成为「全球第一的AI内容平台」为愿景,致力于重新定义未来内容创作和消费范式。公司主要产品有:对话机器人波形Bot、AI写作助手蛙蛙故事、开源工具包Agents等。这些产品可广泛应用于电商、游戏、医疗、教育等领域,为用户提供更优质的内容和服务。
大模型重塑千行百业
盘古大模型是华为云推出的人工智能解决方案,通过 NLP 大模型、CV 大模型、多模态大模型、预测大模型和科学计算大模型等多个模型,实现对话问答、图像识别、多模态处理、预测分析和科学计算等多种功能。盘古大模型具有高效适配、高效标注和准确可控的特点,可广泛应用于各行各业。详情请访问官方网址。
基于Llama-3-8B的多模态大型语言模型,专注于UI任务。
Ferret-UI是首个以用户界面为中心的多模态大型语言模型(MLLM),专为指代表达、定位和推理任务设计。它基于Gemma-2B和Llama-3-8B构建,能够执行复杂的用户界面任务。这个版本遵循了Apple的研究论文,是一个强大的工具,可以用于图像文本到文本的任务,并且在对话和文本生成方面具有优势。
一个用于自然语言处理的先进模型
Meta-spirit-lm是由Meta公司开发的一款先进的自然语言处理模型,它在Hugging Face平台上发布。这款模型在处理语言相关的任务时表现出色,如文本生成、翻译、问答等。它的重要性在于能够理解和生成自然语言,极大地推动了人工智能在语言理解领域的进步。该模型在开源社区中受到广泛关注,可以用于研究和商业用途,但需遵守FAIR Noncommercial Research License。
一个全面的Prompt Engineering技术资源库
Prompt Engineering是人工智能领域的前沿技术,它改变了我们与AI技术的交互方式。这个开源项目旨在为初学者和经验丰富的实践者提供一个学习、构建和分享Prompt Engineering技术的平台。该项目包含了从基础到高级的各种示例,旨在促进Prompt Engineering领域的学习、实验和创新。此外,它还鼓励社区成员分享自己的创新技术,共同推动Prompt Engineering技术的发展。
一个全面的生成式AI代理开发和实现资源库
GenAI_Agents是一个开源的、面向生成式AI代理开发和实现的资源库。它提供了从基础到高级的教程和实现,旨在帮助开发者学习、构建和分享生成式AI代理。这个资源库不仅适合初学者,也适合经验丰富的从业者,通过提供丰富的示例和文档,促进学习和创新。
多语言大型语言模型
Llama-3.2-1B是由Meta公司发布的多语言大型语言模型,专注于文本生成任务。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。该模型支持8种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语,并在多种对话使用案例中表现优异。
全栈式虚拟人多场景应用服务
讯飞虚拟人利用最新的AI虚拟形象技术,结合语音识别、语义理解、语音合成、NLP、星火大模型等AI核心技术,提供虚拟人形象资产构建、AI驱动、多模态交互的多场景虚拟人产品服务。一站式虚拟人音视频内容生产,AIGC助力创作灵活高效;在虚拟'AI演播室'中输入文本或录音,一键完成音、视频作品的输出,3分钟内渲染出稿。
高效能的第三代MiniCPM系列模型
MiniCPM3-4B是MiniCPM系列的第三代产品,整体性能超越了Phi-3.5-mini-Instruct和GPT-3.5-Turbo-0125,与许多近期的7B至9B模型相当。与前两代相比,MiniCPM3-4B具有更强大的多功能性,支持函数调用和代码解释器,使其能够更广泛地应用于各种场景。此外,MiniCPM3-4B拥有32k的上下文窗口,配合LLMxMapReduce技术,理论上可以处理无限上下文,而无需大量内存。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
7.8亿参数的双语生成模型
EXAONE-3.0-7.8B-Instruct是LG AI Research开发的一款具有7.8亿参数的双语(英语和韩语)预训练生成模型。模型通过8T的精选token进行预训练,并经过监督式微调和直接偏好优化进行后训练,展现出与同类大小的开放模型相比极具竞争力的基准性能。
多语言大型语言模型,优化对话场景。
Meta Llama 3.1是一系列多语言的大型预训练和指令调整的生成模型,包含8B、70B和405B大小的版本。这些模型专为多语言对话用例而优化,并在常见行业基准测试中表现优于许多开源和闭源聊天模型。模型使用优化的transformer架构,并通过监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调整,以符合人类对有用性和安全性的偏好。
8B参数的大型多语言生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B大小的版本,支持8种语言,专为多语言对话用例优化,并在行业基准测试中表现优异。Llama 3.1模型采用自回归语言模型,使用优化的Transformer架构,并通过监督式微调(SFT)和强化学习结合人类反馈(RLHF)来提高模型的有用性和安全性。
依托AI与NLP的文本自动查错与智能纠错系统。
无忧智能审核系统是一款基于大数据、人工智能(AI)和自然语言处理技术(NLP)的文本自动查错与智能纠错系统。它通过深度学习能够全面校对多种文本错误类型,有效提升人工检校效率,消除审校盲区,提升内容安全和文本质量。系统支持多种部署方式,包括嵌入版、整站审核和接口版,能够满足不同行业和场景的需求。
一款多功能大型视觉语言模型
InternLM-XComposer-2.5是一款支持长上下文输入和输出的多功能大型视觉语言模型。它在各种文本图像理解和创作应用中表现出色,实现了与GPT-4V相当的水平,但仅使用了7B的LLM后端。该模型通过24K交错图像文本上下文进行训练,能够无缝扩展到96K长上下文,通过RoPE外推。这种长上下文能力使其在需要广泛输入和输出上下文的任务中表现突出。此外,它还支持超高分辨率理解、细粒度视频理解、多轮多图像对话、网页制作以及撰写高质量图文文章等功能。
NVIDIA的高级语言模型,优化于英文对话场景。
Nemotron-4-340B-Instruct是由NVIDIA开发的大型语言模型(LLM),专为英文单轮和多轮对话场景优化。该模型支持4096个token的上下文长度,经过监督式微调(SFT)、直接偏好优化(DPO)和奖励感知偏好优化(RPO)等额外的对齐步骤。模型在约20K人工标注数据的基础上,通过合成数据生成管道合成了超过98%的用于监督微调和偏好微调的数据。这使得模型在人类对话偏好、数学推理、编码和指令遵循方面表现良好,并且能够为多种用例生成高质量的合成数据。
基于Dolphin-2.9-Mixtral-8x22b的先进AI模型
Dolphin 2.9.1 Mixtral 1x22b是由Cognitive Computations团队精心训练和策划的AI模型,基于Dolphin-2.9-Mixtral-8x22b版本,拥有Apache-2.0许可。该模型具备64k上下文容量,通过16k序列长度的全权重微调,经过27小时在8个H100 GPU上的训练完成。Dolphin 2.9.1具有多样的指令、对话和编码技能,还具备初步的代理能力和支持函数调用。该模型未进行审查,数据集已过滤去除对齐和偏见,使其更加合规。建议在作为服务公开之前,实施自己的对齐层。
第二代多模态预训练对话模型
CogVLM2是由清华大学团队开发的第二代多模态预训练对话模型,它在多个基准测试中取得了显著的改进,支持8K内容长度和1344*1344的图像分辨率。CogVLM2系列模型提供了支持中文和英文的开源版本,能够与一些非开源模型相媲美的性能。
Aloe是一款专为医疗领域设计的高性能语言模型,提供先进的文本生成和对话能力。
Aloe是由HPAI开发的一款医疗领域的语言模型,基于Meta Llama 3 8B模型进行优化。它通过模型融合和先进的提示策略,达到了与其规模相匹配的最先进水平。Aloe在伦理和事实性指标上得分较高,这得益于红队和对齐工作的结合。该模型提供了医疗特定的风险评估,以促进这些系统的安全使用和部署。
一款高效经济的语言模型,具有强大的专家混合特性。
DeepSeek-V2是一个由236B参数构成的混合专家(MoE)语言模型,它在保持经济训练和高效推理的同时,激活每个token的21B参数。与前代DeepSeek 67B相比,DeepSeek-V2在性能上更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,并提升了最大生成吞吐量至5.76倍。该模型在8.1万亿token的高质量语料库上进行了预训练,并通过监督式微调(SFT)和强化学习(RL)进一步优化,使其在标准基准测试和开放式生成评估中表现出色。
低代码生成AI应用程序的生成性AI RAG工具包。
create-tsi是一个生成性AI RAG(Retrieval-Augmented Generation)工具包,用于低代码生成AI应用程序。它利用LlamaIndex和T-Systems在Open Telekom Cloud上托管的大型语言模型(LLMs),简化了AI应用程序的创建过程,使其变得快捷、灵活。用户可以使用create-tsi生成聊天机器人、编写代理并针对特定用例进行定制。
一款基于NVIDIA的高性能对话式问答和检索增强型生成模型。
Llama3-ChatQA-1.5-70B 是由 NVIDIA 开发的一款先进的对话式问答和检索增强型生成(RAG)模型。该模型基于 Llama-3 基础模型,并使用改进的训练方法,特别增强了表格和算术计算能力。它有两个变体:Llama3-ChatQA-1.5-8B 和 Llama3-ChatQA-1.5-70B。该模型在多个对话式问答基准测试中取得了优异的成绩,显示出其在处理复杂对话和生成相关回答方面的高效能力。
一款基于NVIDIA技术构建的高级对话问答和生成模型
Llama3-ChatQA-1.5-8B是一款由NVIDIA开发的高级对话问答和检索增强生成(RAG)模型。该模型在ChatQA (1.0)的基础上进行了改进,通过增加对话问答数据来增强其表格和算术计算能力。它有两个变体:Llama3-ChatQA-1.5-8B和Llama3-ChatQA-1.5-70B,都是使用Megatron-LM进行训练,然后转换为Hugging Face格式。该模型在ChatRAG Bench的基准测试中表现出色,适用于需要复杂对话理解和生成的场景。
一款由Gradient AI团队开发的高性能语言模型,支持长文本生成和对话。
Llama-3 70B Instruct Gradient 1048k是一款由Gradient AI团队开发的先进语言模型,它通过扩展上下文长度至超过1048K,展示了SOTA(State of the Art)语言模型在经过适当调整后能够学习处理长文本的能力。该模型使用了NTK-aware插值和RingAttention技术,以及EasyContext Blockwise RingAttention库,以高效地在高性能计算集群上进行训练。它在商业和研究用途中具有广泛的应用潜力,尤其是在需要长文本处理和生成的场景中。
构建定制的大型语言模型(LLM)以增强聊天机器人的能力。
ChatRTX 是 NVIDIA 提供的一个用于构建定制大型语言模型(LLM)的平台,旨在提升聊天机器人的智能水平和交互能力。它利用先进的 AI 技术,通过理解自然语言处理(NLP)来提供更加人性化的对话体验。ChatRTX 的主要优点包括高度的可定制性、强大的语言理解能力和高效的交互设计,适合需要高级对话系统的各种商业应用。
基于GPT-4架构的先进聊天模型,提供高质量的对话体验。
gpt2-chatbot是一个基于GPT-4架构的大型语言模型,由OpenAI训练。它在对话中表现出色,能够提供结构化、有深度的回答,并且在知识存储方面表现出色。该模型在LMSYS的Direct Chat和Arena (Battle)模式中可供使用,允许用户无需登录即可进行交流和评估。
© 2024 AIbase 备案号:闽ICP备08105208号-14