需求人群:
MATLAB可以应用于各种工程和科学领域,包括信号处理、图像处理、控制系统设计、机器学习等。它可以帮助工程师和科学家更高效地进行数据分析、模型开发和可视化。
产品特色:
数据分析
可视化
模型开发
信号处理
图像处理
控制系统设计
机器学习
浏览量:28
最新流量情况
月访问量
11204.38k
平均访问时长
00:06:53
每次访问页数
4.90
跳出率
40.11%
流量来源
直接访问
26.61%
自然搜索
68.58%
邮件
0.04%
外链引荐
4.32%
社交媒体
0.37%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
4.83%
英国
4.83%
印度
7.98%
日本
6.02%
美国
27.50%
MATLAB是最简单、最高效的工程师和科学家软件环境。
MATLAB是一种用于工程和科学计算的软件环境。它提供了丰富的工具和功能,使工程师和科学家能够更轻松地进行数据分析、可视化和模型开发。MATLAB具有简单易学的语法,可以快速实现复杂的计算任务。它还提供了大量的工具箱,覆盖了各种领域的应用,包括信号处理、图像处理、控制系统设计、机器学习等。MATLAB是一款强大的工具,适用于各种工程和科学领域的应用。
免费开源的数据分析工具
KNIME是一款免费开源的数据分析工具,提供可视化的工作流程构建器,帮助用户创建数据科学解决方案,并将其投入企业生产中。它具有数据融合和转换、模型构建和可视化等完整的数据科学平台功能。KNIME易于学习和采用,适用于业务领域专家、数据专家以及机器学习工程师等不同角色的用户。
AI技术预览纹身去除效果,辅助决策
AI Tattoo Removal是一个利用人工智能技术展示纹身去除效果的先进工具。它提供了多种可视化选项和用户友好的界面,适用于考虑纹身去除的个人和专业纹身去除专家。该平台使用尖端的机器学习算法分析并展示纹身去除进度,用户可以查看不同的去除阶段、结果和治疗方案,以更好地理解去除过程。产品的主要优点包括即时可视化、个性化体验和免费的基础功能,同时提供高级功能订阅服务。
8B参数变分自编码器模型,用于高效的文本到图像生成。
Flux.1 Lite是一个由Freepik发布的8B参数的文本到图像生成模型,它是从FLUX.1-dev模型中提取出来的。这个版本相较于原始模型减少了7GB的RAM使用,并提高了23%的运行速度,同时保持了与原始模型相同的精度(bfloat16)。该模型的发布旨在使高质量的AI模型更加易于获取,特别是对于消费级GPU用户。
一个可视化的AI工作流构建平台
Playnode是一个基于网页的AI工作流构建平台,它允许用户通过拖拽的方式创建和部署AI模型,支持多种AI模型和数据流的组合,以实现复杂的数据处理和分析任务。该平台的主要优点是其可视化操作界面,使得即使是非技术用户也能轻松上手,快速构建和部署AI工作流。Playnode的背景信息显示,它旨在降低AI技术的门槛,让更多人能够利用AI技术解决实际问题。目前,Playnode提供免费试用,用户可以开始免费使用并获得每周20个积分,无需信用卡信息。
利用AI进行金融数据分析的Next.js应用程序
Claude Financial Data Analyst是一个结合了Claude AI能力和交互式数据可视化的Next.js应用程序,专门用于分析金融数据。该产品通过聊天方式提供智能数据分析,支持多格式文件上传,并能根据分析内容生成多种图表。它不仅适用于金融领域,还可以适应环境数据、体育表现、社交媒体分析等多样化的应用场景。
高效3D高斯重建模型,实现大场景快速重建
Long-LRM是一个用于3D高斯重建的模型,能够从一系列输入图像中重建出大场景。该模型能在1.3秒内处理32张960x540分辨率的源图像,并且仅在单个A100 80G GPU上运行。它结合了最新的Mamba2模块和传统的transformer模块,通过高效的token合并和高斯修剪步骤,在保证质量的同时提高了效率。与传统的前馈模型相比,Long-LRM能够一次性重建整个场景,而不是仅重建场景的一小部分。在大规模场景数据集上,如DL3DV-140和Tanks and Temples,Long-LRM的性能可与基于优化的方法相媲美,同时效率提高了两个数量级。
开源计算机视觉库
OpenCV是一个跨平台的开源计算机视觉和机器学习软件库,它提供了一系列编程功能,包括但不限于图像处理、视频分析、特征检测、机器学习等。该库广泛应用于学术研究和商业项目中,因其强大的功能和灵活性而受到开发者的青睐。
Excel中的Copilot,释放数据驱动的决策力。
Copilot in Excel是微软推出的一款集成在Excel中的智能助手,它通过自然语言处理和机器学习技术,帮助用户更高效地分析和理解数据。Copilot in Excel的主要优点包括简化数据格式化、自动化重复性任务、提供公式建议、执行条件格式化、进行数据分析和可视化等。它支持Python编程语言,使得用户无需具备专业的编程技能,也能进行高级数据分析。Copilot in Excel的推出,标志着数据分析和决策支持工具的重大进步,它将数据分析的门槛降低,使得更多非技术背景的用户也能轻松地从数据中获取洞见。
首个多模态 Mistral 模型,支持图像和文本的混合任务处理。
Pixtral 12B 是 Mistral AI 团队开发的一款多模态 AI 模型,它能够理解自然图像和文档,具备出色的多模态任务处理能力,同时在文本基准测试中也保持了最先进的性能。该模型支持多种图像尺寸和宽高比,能够在长上下文窗口中处理任意数量的图像,是 Mistral Nemo 12B 的升级版,专为多模态推理而设计,不牺牲关键文本处理能力。
专注于计算机视觉和机器学习领域的研究与创新的博客网站
Shangchen Zhou 是一位在计算机视觉和机器学习领域有着深厚研究背景的博士生,他的工作主要集中在视觉内容增强、编辑和生成AI(2D和3D)上。他的研究成果广泛应用于图像和视频的超分辨率、去模糊、低光照增强等领域,为提升视觉内容的质量和用户体验做出了重要贡献。
多模态大型语言模型,支持图像和文本理解。
Pixtral-12b-240910是由Mistral AI团队发布的多模态大型语言模型,它能够处理和理解图像以及文本信息。该模型采用了先进的神经网络架构,能够通过图像和文本的结合输入,提供更加丰富和准确的输出结果。它在图像识别、自然语言处理和多模态交互方面展现出卓越的性能,对于需要图像和文本同时处理的应用场景具有重要意义。
基于商汤大语言模型的智能办公助手
办公小浣熊是基于商汤大语言模型的大模型原生数据分析产品,通过自然语言输入,结合商汤大模型的能力,自动将数据转化为有意义的分析和可视化结果。它支持复杂表格、多表格、多文件的理解,能够完成数据清洗、数据运算、比较分析、趋势分析,预测性分析、可视化等常见数据分析任务,赋能财务分析、商业分析、销售预测、市场分析、宏观分析等多个应用场景。
使用Gemini API进行图像物体检测的Streamlit应用
bonding_w_geimini是一个基于Streamlit框架开发的图像处理应用,它允许用户上传图片,通过Gemini API进行物体检测,并在图片上直接绘制出物体的边界框。这个应用利用了机器学习模型来识别和定位图片中的物体,对于图像分析、数据标注和自动化图像处理等领域具有重要意义。
开源数据标注工具,提升机器学习模型性能。
LabelU是一个开源的数据标注工具,适用于需要对图像、视频、音频等数据进行高效标注的场景,以提升机器学习模型的性能和质量。它支持多种标注类型,包括标签分类、文本描述、拉框等,满足不同场景的标注需求。
开源语言代理,解决复杂多步推理任务。
Husky-v1是一个开源的语言代理模型,专注于解决包含数值、表格和基于知识的复杂多步推理任务。它使用工具使用、代码生成器、查询生成器和数学推理器等专家模型来执行推理。此模型支持CUDA 11.8,需要下载相应的模型文件,并可以通过优化的推理过程并行运行所有专家模型。
先进的视觉基础模型,支持多种视觉和视觉-语言任务。
Florence-2-large-ft是由微软开发的高级视觉基础模型,使用基于提示的方法来处理广泛的视觉和视觉-语言任务。该模型能够通过简单的文本提示执行诸如图像描述、目标检测和分割等任务。它利用FLD-5B数据集,包含54亿个注释,覆盖1.26亿张图像,实现多任务学习。模型的序列到序列架构使其在零样本和微调设置中均表现出色,证明其为有竞争力的视觉基础模型。
先进的单目深度估计模型
Depth Anything V2 是一个经过改进的单目深度估计模型,它通过使用合成图像和大量未标记的真实图像进行训练,提供了比前一版本更精细、更鲁棒的深度预测。该模型在效率和准确性方面都有显著提升,速度比基于Stable Diffusion的最新模型快10倍以上。
一个多功能且强大的SDXL-ControlNet模型,适用于各种线条艺术的调节。
MistoLine是一个SDXL-ControlNet模型,能够适应任何类型的线条艺术输入,展示出高精度和出色的稳定性。它基于用户提供的线条艺术生成高质量图像,适用于手绘草图、不同ControlNet线条预处理器和模型生成的轮廓。MistoLine通过采用新颖的线条预处理算法(Anyline)和基于stabilityai/stable-diffusion-xl-base-1.0的Unet模型的重新训练,以及在大型模型训练工程中的创新,展现出在复杂场景下超越现有ControlNet模型的细节恢复、提示对齐和稳定性的优越性能。
IC-Light是一个用于图像照明操纵的项目。
IC-Light项目旨在通过先进的机器学习技术,对图像的照明条件进行操纵,从而实现一致的光照效果。它提供了两种类型的模型:文本条件重照明模型和背景条件模型,两者均以前景图像作为输入。该技术的重要性在于它能够在不依赖复杂提示的情况下,通过简单的文本描述或背景条件,实现对图像照明的精确控制,这对于图像编辑、增强现实、虚拟现实等领域具有重要意义。
一种用于逆渲染的先进学习扩散先验方法,能够从任意图像中恢复物体材质并实现单视图图像重照明。
IntrinsicAnything 是一种先进的图像逆渲染技术,它通过学习扩散模型来优化材质恢复过程,解决了在未知静态光照条件下捕获的图像中物体材质恢复的问题。该技术通过生成模型学习材质先验,将渲染方程分解为漫反射和镜面反射项,利用现有丰富的3D物体数据进行训练,有效地解决了逆渲染过程中的歧义问题。此外,该技术还开发了一种从粗到细的训练策略,利用估计的材质引导扩散模型产生多视图一致性约束,从而获得更稳定和准确的结果。
一款可以将图像转化为不适合进行机器学习模型训练的"毒药"样本的工具
Nightshade是一款用于保护版权的工具。它可以将图像转化为不适合进行机器学习模型训练的"毒药"样本,从而避免内容被无授权使用。Nightshade不依赖于训练者的善意,而是增加了训练未经授权数据的成本,促使训练者选择从创作者处获得授权。相比于水印等传统方法,Nightshade更加鲁棒,能抵抗各种图像处理,同时对原图的视觉效果影响较小。Nightshade目前作为独立工具提供,未来将与Glaze工具整合发布。
上传数据,获取机器学习模型
Automated Machine Learning as a Service是一个提供自动化机器学习服务的网站。用户可以通过上传数据来获取他们的机器学习模型,该平台为用户提供了便捷的机器学习模型开发和部署流程。该平台还提供了丰富的功能和优势,包括简单易用的界面、自动化的模型训练和优化、灵活的定价策略等。用户可以根据自己的需求选择适合的定价方案,并在不同的场景中应用该机器学习模型。该产品的定位是为广大用户提供高效、便捷、灵活的机器学习解决方案。
实时一步潜在扩散模型,可用图像条件控制生成
SDXS是一种新的扩散模型,通过模型微型化和减少采样步骤,大幅降低了模型延迟。它利用知识蒸馏来简化U-Net和图像解码器架构,并引入了一种创新的单步DM训练技术,使用特征匹配和分数蒸馆。SDXS-512和SDXS-1024模型可在单个GPU上分别实现约100 FPS和30 FPS的推理速度,比之前模型快30至60倍。此外,该训练方法在图像条件控制方面也有潜在应用,可实现高效的图像到图像翻译。
Google Sheets助手
Sheet Copilot是一个Google Sheets助手,可以自动执行数据处理、分析和报告生成等任务。它具有智能数据处理、自动化报表生成、数据分析和可视化等功能。价格根据使用情况定制,定位于提高工作效率和减少人工操作。
学习网络中的三维动物
3D Fauna是一个通过学习 2D 网络图片来构建三维动物模的方法。它通过引入语义相关的模型集合来解决模型泛化的挑战,并提供了一个新的大规模数据集。在推理过程中,给定一张任意四足动物的图片,我们的模型可以在几秒内通过前馈方式重建出一个有关联的三维网格模型。
© 2024 AIbase 备案号:闽ICP备08105208号-14