需求人群:
"视频创作者、广告公司等需要高质量视频生成的用户,适合他们快速生成创意视频,提高工作效率。"
使用场景示例:
根据文本描述生成一个男人穿着毛皮大衣在南极雪地中奔跑,周围有许多爆炸场景的视频。
生成一辆老爷车在秋色山路上行驶,车身反射上方火红树冠,落叶在车后旋转,阳光透过树枝在车头形成斑驳光影的视频。
按照指令生成两个穿着夏威夷衬衫和太阳镜的北极熊在漂浮冰山上晒太阳的视频。
产品特色:
文本到视频生成:根据文本指令生成相应视频。
自然连贯动作:生成的视频动作自然流畅。
超逼真细节:视频细节高度逼真。
逻辑事件序列:视频中事件发展符合逻辑。
多种输入支持:支持文本、图像、视频输入。
使用教程:
1. 访问 https://lumalabs.ai/ray 页面。
2. 点击 'Try now' 按钮,进入 Dream Machine 平台。
3. 选择 'Ray2' 模型。
4. 输入文本指令或上传图像、视频等素材。
5. 点击生成按钮,等待模型生成视频。
6. 下载或使用生成的视频。
浏览量:6
最新流量情况
月访问量
5559.42k
平均访问时长
00:05:37
每次访问页数
5.44
跳出率
43.46%
流量来源
直接访问
53.23%
自然搜索
39.71%
邮件
0.04%
外链引荐
4.47%
社交媒体
2.46%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
4.37%
法国
4.05%
印度
6.32%
俄罗斯
5.25%
美国
12.83%
大规模视频生成模型,可创建逼真视觉效果与自然连贯动作。
Luma Ray2 是一款先进的视频生成模型,基于 Luma 新的多模态架构训练,计算能力是 Ray1 的 10 倍。它能够理解文本指令,并可接受图像和视频输入,生成具有快速连贯动作、超逼真细节和逻辑事件序列的视频,使生成的视频更接近生产就绪状态。目前提供文本到视频的生成功能,图像到视频、视频到视频和编辑功能即将推出。产品主要面向需要高质量视频生成的用户,如视频创作者、广告公司等,目前仅对付费订阅用户开放,可通过官网链接尝试使用。
一种基于扩散变换器网络的高动态、逼真肖像图像动画技术。
Hallo3是一种用于肖像图像动画的技术,它利用预训练的基于变换器的视频生成模型,能够生成高度动态和逼真的视频,有效解决了非正面视角、动态对象渲染和沉浸式背景生成等挑战。该技术由复旦大学和百度公司的研究人员共同开发,具有强大的泛化能力,为肖像动画领域带来了新的突破。
开源图像到视频生成模型
Ruyi-Mini-7B是由CreateAI团队开发的开源图像到视频生成模型,具有约71亿参数,能够从输入图像生成360p到720p分辨率的视频帧,最长5秒。模型支持不同宽高比,并增强了运动和相机控制功能,提供更大的灵活性和创造力。该模型在Apache 2.0许可下发布,意味着用户可以自由使用和修改。
快速因果视频生成器,实现即时视频生成。
CausVid是一个先进的视频生成模型,它通过将预训练的双向扩散变换器适配为因果变换器,实现了即时视频帧的生成。这一技术的重要性在于它能够显著减少视频生成的延迟,使得视频生成能够以交互式帧率(9.4FPS)在单个GPU上进行流式生成。CausVid模型支持从文本到视频的生成,以及零样本图像到视频的生成,展现了视频生成技术的新高度。
腾讯开源的大型视频生成模型训练框架
HunyuanVideo是腾讯开源的一个系统性框架,用于训练大型视频生成模型。该框架通过采用数据策划、图像-视频联合模型训练和高效的基础设施等关键技术,成功训练了一个超过130亿参数的视频生成模型,是所有开源模型中最大的。HunyuanVideo在视觉质量、运动多样性、文本-视频对齐和生成稳定性方面表现出色,超越了包括Runway Gen-3、Luma 1.6在内的多个行业领先模型。通过开源代码和模型权重,HunyuanVideo旨在缩小闭源和开源视频生成模型之间的差距,推动视频生成生态系统的活跃发展。
文本图像到视频生成模型
Allegro-TI2V是一个文本图像到视频生成模型,它能够根据用户提供的提示和图像生成视频内容。该模型以其开源性、多样化的内容创作能力、高质量的输出、小巧高效的模型参数以及支持多种精度和GPU内存优化而受到关注。它代表了当前人工智能技术在视频生成领域的前沿进展,具有重要的技术价值和商业应用潜力。Allegro-TI2V模型在Hugging Face平台上提供,遵循Apache 2.0开源协议,用户可以免费下载和使用。
视频生成模型Sora的存档库
SoraVids是一个基于Hugging Face平台的视频生成模型Sora的存档库。它包含了87个视频和83个对应的提示,这些视频和提示在OpenAI撤销API密钥前被公开展示。这些视频均为MIME类型video/mp4,帧率为30 FPS。SoraVids的背景是OpenAI的视频生成技术,它允许用户通过文本提示生成视频内容。这个存档库的重要性在于它保存了在API密钥被撤销前生成的视频,为研究和教育提供了宝贵的资源。
基于DiT的视频生成模型,实时生成高质量视频。
LTX-Video是由Lightricks开发的首个基于DiT的视频生成模型,能够实时生成高质量的视频内容。该模型以24 FPS的速度生成768x512分辨率的视频,速度超过观看速度。模型经过大规模多样化视频数据集的训练,能够生成高分辨率且内容真实多样的视频。LTX-Video支持文本到视频(text-to-video)以及图像+文本到视频(image+text-to-video)的应用场景。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
视频生成评估基准测试
Movie Gen Bench是由Facebook Research发布的视频生成评估基准测试,旨在为未来在视频生成领域的研究提供公平且易于比较的标准。该基准测试包括Movie Gen Video Bench和Movie Gen Audio Bench两个部分,分别针对视频内容生成和音频生成进行评估。Movie Gen Bench的发布,对于推动视频生成技术的发展和评估具有重要意义,它能够帮助研究人员和开发者更好地理解和改进视频生成模型的性能。
重新定义视频创作
Hailuo AI Video Generator 是一款利用人工智能技术,根据文本提示自动生成视频内容的工具。它通过深度学习算法,将用户的文字描述转化为视觉图像,极大地简化了视频制作流程,提高了创作效率。该产品适用于需要快速生成视频内容的个人和企业,特别是在广告、社交媒体内容制作和电影预览等领域。
数字人模型,支持生成普通话视频
JoyHallo是一个数字人模型,专为普通话视频生成而设计。它通过收集来自京东健康国际有限公司员工的29小时普通话视频,创建了jdh-Hallo数据集。该数据集覆盖了不同年龄和说话风格,包括对话和专业医疗话题。JoyHallo模型采用中国wav2vec2模型进行音频特征嵌入,并提出了一种半解耦结构来捕捉唇部、表情和姿态特征之间的相互关系,提高了信息利用效率,并加快了推理速度14.3%。此外,JoyHallo在生成英语视频方面也表现出色,展现了卓越的跨语言生成能力。
谷歌旗下领先的人工智能研究公司
Google DeepMind 是谷歌旗下的一家领先的人工智能公司,专注于开发先进的机器学习算法和系统。DeepMind 以其在深度学习和强化学习领域的开创性工作而闻名,其研究涵盖了从游戏到医疗保健等多个领域。DeepMind 的目标是通过构建智能系统来解决复杂的问题,推动科学和医学的进步。
生成视频的开源模型
CogVideoX是一个开源的视频生成模型,由清华大学团队开发,支持从文本描述生成视频。它提供了多种视频生成模型,包括入门级和大型模型,以满足不同质量和成本需求。模型支持多种精度,包括FP16和BF16,推荐使用与模型训练时相同的精度进行推理。CogVideoX-5B模型特别适用于需要生成高质量视频内容的场景,如电影制作、游戏开发和广告创意。
文本到视频的生成模型
CogVideoX是一个开源的视频生成模型,与商业模型同源,支持通过文本描述生成视频内容。它代表了文本到视频生成技术的最新进展,具有生成高质量视频的能力,能够广泛应用于娱乐、教育、商业宣传等领域。
可控视频和图像生成技术
ControlNeXt是一个开源的图像和视频生成模型,它通过减少高达90%的可训练参数,实现了更快的收敛速度和卓越的效率。该项目支持多种控制信息形式,并且可以与LoRA技术结合使用,以改变风格并确保更稳定的生成效果。
高质量人体动作视频生成
MimicMotion是由腾讯公司和上海交通大学联合研发的高质量人体动作视频生成模型。该模型通过信心感知的姿态引导,实现了对视频生成过程的可控性,提高了视频的时序平滑性,并减少了图像失真。它采用了先进的图像到视频的扩散模型,结合了时空U-Net和PoseNet,能够根据姿势序列条件生成任意长度的高质量视频。MimicMotion在多个方面显著优于先前的方法,包括手部生成质量、对参考姿势的准确遵循等。
开创高保真、可控视频生成新领域。
Gen-3 Alpha 是 Runway 训练的一系列模型中的首个,它在新的基础设施上训练,专为大规模多模态训练而建。它在保真度、一致性和动作方面相较于 Gen-2 有重大改进,并朝着构建通用世界模型迈进了一步。该模型能够生成具有丰富动作、手势和情感的表达性人物角色,为叙事提供了新的机会。
文本到视频生成的创新框架
VideoTetris是一个新颖的框架,它实现了文本到视频的生成,特别适用于处理包含多个对象或对象数量动态变化的复杂视频生成场景。该框架通过空间时间组合扩散技术,精确地遵循复杂的文本语义,并通过操作和组合去噪网络的空间和时间注意力图来实现。此外,它还引入了一种新的参考帧注意力机制,以提高自回归视频生成的一致性。VideoTetris在组合文本到视频生成方面取得了令人印象深刻的定性和定量结果。
训练无关的运动克隆,实现可控视频生成
MotionClone是一个训练无关的框架,允许从参考视频进行运动克隆,以控制文本到视频的生成。它利用时间注意力机制在视频反转中表示参考视频中的运动,并引入了主时间注意力引导来减轻注意力权重中噪声或非常微妙运动的影响。此外,为了协助生成模型合成合理的空间关系并增强其提示跟随能力,提出了一种利用参考视频中的前景粗略位置和原始分类器自由引导特征的位置感知语义引导机制。
文本到视频生成的创新模型,实现姿势引导的动画制作。
Follow-Your-Pose是一个文本到视频生成的模型,它利用姿势信息和文本描述来生成可编辑、可控制姿势的角色视频。这项技术在数字人物创作领域具有重要应用价值,解决了缺乏综合数据集和视频生成先验模型的限制。通过两阶段训练方案,结合预训练的文本到图像模型,实现了姿势可控的视频生成。
实时视频生成与增强工具
KREA Video 是一款在线视频生成和增强工具,它利用先进的人工智能技术,为用户提供实时视频生成和编辑功能。它允许用户上传图片或文本提示,生成具有动画效果的视频,并且可以调整视频的时长和关键帧。KREA Video 的主要优点是操作简便,用户界面友好,能够快速生成高质量的视频内容,适用于内容创作者、广告制作者和视频编辑专业人士。
一款面向高质量长视频生成的实验性框架,具有扩展序列长度和增强动态特性。
Mira(Mini-Sora)是一个实验性的项目,旨在探索高质量、长时视频生成领域,特别是在模仿Sora风格的视频生成方面。它在现有文本到视频(T2V)生成框架的基础上,通过以下几个关键方面实现突破:扩展序列长度、增强动态特性以及保持3D一致性。目前,Mira项目处于实验阶段,与Sora等更高级的视频生成技术相比,仍有提升空间。
零样本身份保持人类视频生成技术
ID-Animator是一种零样本人类视频生成方法,能够在不需要进一步训练的情况下,根据单个参考面部图像进行个性化视频生成。该技术继承了现有的基于扩散的视频生成框架,并加入了面部适配器以编码与身份相关的嵌入。通过这种方法,ID-Animator能够在视频生成过程中保持人物身份的细节,同时提高训练效率。
AI图像、视频、音乐生成工具
ApolloAI是一款人工智能平台,提供AI图像、视频、音乐、语音合成等功能。用户可以通过文本或图片输入生成多种类型的内容,具备商业使用权。定价灵活,提供订阅和一次性购买两种模式。
探索人工智能的无限可能
无限人工智能致力于构建生成式视频模型,专注于人类。我们相信人是故事的中心,而故事是人类处理、学习和进化的方式。我们预测未来 10 年内,一支由 3 名作家组成的团队,无需演员、导演或其他工作人员,将赢得奥斯卡奖。我们正在开发他们将使用的工具。欢迎加入我们的探索之旅。
用于自动驾驶的大规模视频生成模型
GenAD是由上海人工智能实验室联合香港科技大学、德国图宾根大学和香港大学共同推出的首个大规模自动驾驶视频生成模型。它通过预测和模拟真实世界场景,为自动驾驶技术的研究和应用提供支撑。GenAD在理解复杂动态环境、适应开放世界场景、精准预测等方面具有较强能力,能够通过语言和行车轨迹进行控制,并展现出应用于自动驾驶规划任务的潜力,有助于提高行车安全性和效率。
© 2024 AIbase 备案号:闽ICP备08105208号-14