需求人群:
["3D设计师:可以利用Interactive3D的精细控制能力,创造出符合设计意图的3D模型。","游戏开发者:通过模型组合和变形功能,快速构建游戏内的角色和场景。","教育领域:作为教学工具,帮助学生理解3D模型的构建过程,提升空间想象力。"]
使用场景示例:
创建一个暴龙模型并调整其嘴巴的开合状态。
组装一个带有冰剑和冰翼的高达机器人模型。
设计一个外形类似香蕉的鲸鱼模型。
产品特色:
Gaussian Splatting:允许用户通过添加、移除组件、可变形和刚性拖拽、几何变换以及语义编辑进行直接交互。
Rigid Dragging:使用刚性拖拽技术打开模型的特定部分,如打开暴龙的嘴巴。
Part Combination:通过部件组合技术,用户可以组装自己的高达机器人模型。
Hash Refinement:利用哈希细化技术提高模型质量,增加细节。
Semantic Editing:通过语义编辑改变模型的属性,如将高达机器人的剑变为冰剑。
Deformable Dragging:使用可变形拖拽技术创建形状独特的模型,如香蕉形状的鲸鱼。
Geometric Transformation:利用几何变换技术打开精灵球,展示内部的飞行小龙。
使用教程:
1. 访问Interactive3D的官方网站。
2. 选择一个基础的3D模型或创建一个新的模型。
3. 利用Gaussian Splatting进行初步的模型交互,如添加或移除组件。
4. 通过Rigid Dragging、Deformable Dragging等技术调整模型的特定部分。
5. 使用Part Combination技术组合不同的模型部件。
6. 应用Hash Refinement和Semantic Editing对模型进行细节上的优化和属性上的修改。
7. 完成模型设计后,导出或进一步编辑以满足特定需求。
浏览量:43
最新流量情况
月访问量
839
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
47.05%
流量来源
直接访问
36.79%
自然搜索
47.19%
邮件
0.30%
外链引荐
10.58%
社交媒体
3.38%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
日本
28.25%
巴拉圭
71.75%
通过交互式3D生成技术,实现高质量且可控的3D模型创建。
Interactive3D是一个先进的3D生成模型,它通过交互式设计为用户提供了精确的控制能力。该模型采用两阶段级联结构,利用不同的3D表示方法,允许用户在生成过程的任何中间步骤进行修改和引导。它的重要性在于能够实现用户对3D模型生成过程的精细控制,从而创造出满足特定需求的高质量3D模型。
一个高效的无边界3D城市生成框架,使用3D高斯绘制技术实现快速生成。
GaussianCity是一个专注于高效生成无边界3D城市的框架,基于3D高斯绘制技术。该技术通过紧凑的3D场景表示和空间感知的高斯属性解码器,解决了传统方法在生成大规模城市场景时面临的内存和计算瓶颈。其主要优点是能够在单次前向传递中快速生成大规模3D城市,显著优于现有技术。该产品由南洋理工大学S-Lab团队开发,相关论文发表于CVPR 2025,代码和模型已开源,适用于需要高效生成3D城市环境的研究人员和开发者。
与您的应用程序进行自然语言交互,提升工作效率和便捷性。
Concierge AI 是一款通过自然语言与应用程序交互的产品,它利用先进的自然语言处理技术,让用户能够以更直观、更便捷的方式与各种应用程序进行沟通和操作。这种技术的重要性在于它能够打破传统界面操作的限制,让用户以更自然表达的方式需求,从而提高工作效率和用户体验。产品目前处于推广阶段,具体价格和详细定位尚未明确,但其目标是为用户提供一种全新的交互方式,以满足现代工作环境中对效率和便捷性的高要求。
3D生成模型,实现高质量多样化的3D资产创建
TRELLIS是一个基于统一结构化潜在表示和修正流变换器的原生3D生成模型,能够实现多样化和高质量的3D资产创建。该模型通过整合稀疏的3D网格和从强大的视觉基础模型提取的密集多视图视觉特征,全面捕获结构(几何)和纹理(外观)信息,同时在解码过程中保持灵活性。TRELLIS模型能够处理高达20亿参数,并在包含50万个多样化对象的大型3D资产数据集上进行训练。该模型在文本或图像条件下生成高质量结果,显著超越现有方法,包括规模相似的最近方法。TRELLIS还展示了灵活的输出格式选择和局部3D编辑能力,这些是以前模型所没有提供的。代码、模型和数据将被发布。
AI系统从单张图片生成3D世界
这是一个能够从单张图片生成3D世界的AI系统,它允许用户进入任何图片并进行3D探索。这项技术改善了控制和一致性,将改变我们制作电影、游戏、模拟器以及其他数字表现形式的方式。它代表了空间智能的第一步,通过在浏览器中实时渲染生成的世界,用户可以体验不同的相机效果、3D效果,并深入探索经典画作。
生成任何3D和4D场景的先进框架
GenXD是一个专注于3D和4D场景生成的框架,它利用日常生活中常见的相机和物体运动来联合研究一般的3D和4D生成。由于社区缺乏大规模的4D数据,GenXD首先提出了一个数据策划流程,从视频中获取相机姿态和物体运动强度。基于此流程,GenXD引入了一个大规模的现实世界4D场景数据集:CamVid-30K。通过利用所有3D和4D数据,GenXD框架能够生成任何3D或4D场景。它提出了多视图-时间模块,这些模块分离相机和物体运动,无缝地从3D和4D数据中学习。此外,GenXD还采用了掩码潜在条件,以支持多种条件视图。GenXD能够生成遵循相机轨迹的视频以及可以提升到3D表示的一致3D视图。它在各种现实世界和合成数据集上进行了广泛的评估,展示了GenXD在3D和4D生成方面与以前方法相比的有效性和多功能性。
腾讯推出的3D生成框架,支持文本和图像到3D的生成。
Hunyuan3D-1是腾讯推出的一个统一框架,用于文本到3D和图像到3D的生成。该框架采用两阶段方法,第一阶段使用多视图扩散模型快速生成多视图RGB图像,第二阶段通过前馈重建模型快速重建3D资产。Hunyuan3D-1.0在速度和质量之间取得了令人印象深刻的平衡,显著减少了生成时间,同时保持了生成资产的质量和多样性。
首个同时支持文生和图生的3D开源模型
腾讯混元3D是一个开源的3D生成模型,旨在解决现有3D生成模型在生成速度和泛化能力上的不足。该模型采用两阶段生成方法,第一阶段使用多视角扩散模型快速生成多视角图像,第二阶段通过前馈重建模型快速重建3D资产。混元3D-1.0模型能够帮助3D创作者和艺术家自动化生产3D资产,支持快速单图生3D,10秒内完成端到端生成,包括mesh和texture提取。
从单目视频生成高质量4D对象的新型框架
DreamMesh4D是一个结合了网格表示与稀疏控制变形技术的新型框架,能够从单目视频中生成高质量的4D对象。该技术通过结合隐式神经辐射场(NeRF)或显式的高斯绘制作为底层表示,解决了传统方法在空间-时间一致性和表面纹理质量方面的挑战。DreamMesh4D利用现代3D动画流程的灵感,将高斯绘制绑定到三角网格表面,实现了纹理和网格顶点的可微优化。该框架开始于由单图像3D生成方法提供的粗糙网格,通过均匀采样稀疏点来构建变形图,以提高计算效率并提供额外的约束。通过两阶段学习,结合参考视图光度损失、得分蒸馏损失以及其他正则化损失,实现了静态表面高斯和网格顶点以及动态变形网络的学习。DreamMesh4D在渲染质量和空间-时间一致性方面优于以往的视频到4D生成方法,并且其基于网格的表示与现代几何流程兼容,展示了其在3D游戏和电影行业的潜力。
利用扩散变换器生成高质量的3D资产。
3DTopia-XL 是一个基于扩散变换器(DiT)构建的高质量3D资产生成技术,使用一种新颖的3D表示方法 PrimX。该技术能够将3D形状、纹理和材质编码到一个紧凑的N x D张量中,每个标记是一个体积原语,锚定在形状表面上,用体素化载荷编码符号距离场(SDF)、RGB和材质。这一过程仅需5秒即可从文本/图像输入生成3D PBR资产,适用于图形管道。
基于参考增强扩散的3D内容生成模型
Phidias是一个创新的生成模型,它利用扩散技术进行参考增强的3D生成。该模型通过图像、文本或3D条件生成高质素的3D资产,并且能够在几秒钟内完成。它通过整合三个关键组件:动态调节条件强度的Meta-ControlNet、动态参考路由以及自参考增强,显著提高了生成质量、泛化能力和可控性。Phidias为使用文本、图像和3D条件进行3D生成提供了统一框架,并具有多种应用场景。
3D生成模型的创新突破
VFusion3D是一种基于预训练的视频扩散模型构建的可扩展3D生成模型。它解决了3D数据获取困难和数量有限的问题,通过微调视频扩散模型生成大规模合成多视角数据集,训练出能够从单张图像快速生成3D资产的前馈3D生成模型。该模型在用户研究中表现出色,用户超过90%的时间更倾向于选择VFusion3D生成的结果。
一种通过3D感知递归扩散生成3D模型的框架
Ouroboros3D是一个统一的3D生成框架,它将基于扩散的多视图图像生成和3D重建集成到一个递归扩散过程中。该框架通过自条件机制联合训练这两个模块,使它们能够相互适应,以实现鲁棒的推理。在多视图去噪过程中,多视图扩散模型使用由重建模块在前一时间步渲染的3D感知图作为附加条件。递归扩散框架与3D感知反馈相结合,提高了整个过程的几何一致性。实验表明,Ouroboros3D框架在性能上优于将这两个阶段分开训练的方法,以及在推理阶段将它们结合起来的现有方法。
探索人工智能如何塑造我们的世界和交互模式。
The Shape of AI 是一个专注于人工智能交互模式的网站,它提供了关于如何在设计中融入人工智能的深入见解。该网站强调了用户体验的重要性,并探讨了在AI驱动的世界中,如何通过设计来优化人机交互。它包含了丰富的资源和工具,帮助设计师和开发者理解AI的新兴模式,以及如何利用这些模式来提升他们的产品和服务。
用于高质量高效3D重建和生成的大型高斯重建模型
GRM是一种大规模的重建模型,能够在0.1秒内从稀疏视图图像中恢复3D资产,并且在8秒内实现生成。它是一种前馈的基于Transformer的模型,能够高效地融合多视图信息将输入像素转换为像素对齐的高斯分布,这些高斯分布可以反投影成为表示场景的密集3D高斯分布集合。我们的Transformer架构和使用3D高斯分布的方式解锁了一种可扩展、高效的重建框架。大量实验结果证明了我们的方法在重建质量和效率方面优于其他替代方案。我们还展示了GRM在生成任务(如文本到3D和图像到3D)中的潜力,通过与现有的多视图扩散模型相结合。
从单张图片生成高质量3D视图和新颖视角的3D生成技术
Stable Video 3D是Stability AI推出的新模型,它在3D技术领域取得了显著进步,与之前发布的Stable Zero123相比,提供了大幅改进的质量和多视角支持。该模型能够在没有相机条件的情况下,基于单张图片输入生成轨道视频,并且能够沿着指定的相机路径创建3D视频。
即时创建应用的线框图,传达您的构思
Thread App是一个帮助您快速创建简单交互式线框图的工具,用于测试和分享您的构思。通过描述您想要构建的内容,Thread AI可以快速生成与您描述匹配的线框图。您还可以通过进一步的指令或手动编辑来自定义您的线框图。无论是设计师、开发者还是产品经理,Thread都是测试构思的最快捷方式。
高分辨率3D内容生成的多视图高斯模型
LGM是一个用于从文本提示或单视图图像生成高分辨率3D模型的新框架。它的关键见解是:(1) 3D表示:我们提出了多视图高斯特征作为一个高效 yet 强大的表示,然后可以将其融合在一起进行不同iable 渲染。(2) 3D主干:我们呈现了一个不对称U-Net作为一个高通量的主干操作多视图图像,这可以通过利用多视图扩散模型从文本或单视图图像输入中产生。大量的实验表明了我们方法的高保真度和效率。值得注意的是,我们在将训练分辨率提高到512的同时保持生成3D对象的快速速度,从而实现了高分辨率的3D内容生成。
稳定扩散:距离快速多样的文本生成3D仅一步之遥
HexaGen3D是一种用于从文本提示生成高质量3D资产的创新方法。它利用大型预训练的2D扩散模型,通过微调预训练的文本到图像模型来联合预测6个正交投影和相应的潜在三面体,然后解码这些潜在值以生成纹理网格。HexaGen3D不需要每个样本的优化,可在7秒内从文本提示中推断出高质量且多样化的对象,相较于现有方法,提供了更好的质量与延迟权衡。此外,HexaGen3D对于新对象或组合具有很强的泛化能力。
开源的3D生成模型评价工具
GPTEval3D是一个开源的3D生成模型评价工具,基于GPT-4V实现了对文本到3D生成模型的自动评测。它可以计算生成模型的ELO分数,并与现有模型进行对比排名。该工具简单易用,支持用户自定义评测数据集,可以充分发挥GPT-4V的评测效果,是研究3D生成任务的有力工具。
基于低秩参数优化的模型控制技术
Control-LoRA 是通过在 ControlNet 上添加低秩参数优化来实现的,为消费级 GPU 提供了更高效、更紧凑的模型控制方法。该产品包含多个 Control-LoRA 模型,包括 MiDaS 和 ClipDrop 深度估计、Canny 边缘检测、照片和素描上色、Revision 等功能。Control-LoRA 模型经过训练,可以在不同的图像概念和纵横比上生成高质量的图像。
© 2025 AIbase 备案号:闽ICP备08105208号-14