浏览量:72
最新流量情况
月访问量
1086
平均访问时长
00:00:07
每次访问页数
1.80
跳出率
41.94%
流量来源
直接访问
33.43%
自然搜索
47.05%
邮件
0.34%
外链引荐
13.11%
社交媒体
3.83%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
德国
39.56%
英国
23.47%
印度尼西亚
1.12%
卡塔尔
35.85%
javascript神经网络库
Synaptic是一个开源的javascript神经网络库,提供了基本的神经元、网络、训练器和网络构建工具。它可以用于构建和训练各种类型的神经网络,如感知机、长短时记忆网络(LSTM)、液态状态机和Hopfield网络。Synaptic还提供了一些示例和演示,帮助用户学习和使用神经网络。
无代码搭建目标检测神经网络
MakeML是一个无需编写任何代码就可以搭建图像目标检测神经网络的开发工具。它提供了一个简单易用的图形界面,用户只需上传训练集图片,绘制bounding box,设置参数,就可以训练出一个高效的目标检测模型,并导出成CoreML格式在iOS App中使用。MakeML解决了神经网络开发门槛高的痛点,不需要任何机器学习或编程知识,就可以获得强大的深度学习能力。
CoreNet 是一个用于训练深度神经网络的库。
CoreNet 是一个深度神经网络工具包,使研究人员和工程师能够训练标准和新颖的小型和大型规模模型,用于各种任务,包括基础模型(例如 CLIP 和 LLM)、对象分类、对象检测和语义分割。
神经网络扩散模型实现
Neural Network Diffusion是由新加坡国立大学高性能计算与人工智能实验室开发的神经网络扩散模型。该模型利用扩散过程生成高质量的图像,适用于图像生成和修复等任务。
用神经网络预测你的涂鸦速度有多快
Doodle Dash 是一个趣味的在线游戏,它使用神经网络来预测玩家涂鸦的速度。玩家可以在游戏中尽可能快地画出指定的涂鸦,神经网络会根据你的画速给出预测结果。这个游戏基于🤗 Transformers.js 开发。
从零开始学习深度学习,实现GPT模型
zero_to_gpt是一个旨在帮助用户从零基础学习深度学习,并最终实现训练自己的GPT模型的教程。随着人工智能技术走出实验室并广泛应用于各行各业,社会对于能够理解并应用AI技术的人才需求日益增长。本教程结合理论与实践,通过解决实际问题(如天气预测、语言翻译等)来深入讲解深度学习的理论基础,如梯度下降和反向传播。课程内容从基础的神经网络架构和训练方法开始,逐步深入到复杂主题,如变换器、GPU编程和分布式训练。
使用单眼视频记录产生实时4D头像合成的神经网络方法
BakedAvatar是一种用于实时神经头像合成的全新表示,可部署在标准多边形光栅化流水线中。该方法从学习到的头部等值面提取可变形的多层网格,并计算可烘焙到静态纹理中的表情、姿势和视角相关外观,从而为实时4D头像合成提供支持。我们提出了一个三阶段的神经头像合成流水线,包括学习连续变形、流形和辐射场,提取分层网格和纹理,以及通过微分光栅化来微调纹理细节。实验结果表明,我们的表示产生了与其他最先进方法相当的综合结果,并显著减少了所需的推理时间。我们进一步展示了从单眼视频中产生的各种头像合成结果,包括视图合成、面部重现、表情编辑和姿势编辑,所有这些都以交互式帧率进行。
从像素到画作的神经网络绘画生成器
Ai Painter是一款神经网络绘画生成器,可以将您的照片转化为艺术作品或创作抽象艺术。它使用先进的人工智能技术,能够快速、准确地将您的照片转化为绘画作品。Ai Painter不需要任何下载,操作简单,适合所有技能水平的用户。Ai Painter是免费的,您可以在不花费任何费用的情况下使用它。
一站式深度学习解决方案
深度学习助手是一款集模型训练、数据处理和结果分析于一体的深度学习平台。它提供丰富的神经网络模型,可以帮助用户快速构建和训练自己的深度学习模型。同时,它还具备数据预处理功能,方便用户对数据进行清洗和转换。除此之外,深度学习助手还提供了强大的结果分析工具,帮助用户深入理解和优化模型效果。定价灵活合理,适用于个人开发者和企业用户。
一个全面的AI神经网络工具目录
AILIBRI是一个汇集了超过2000个AI神经网络工具的目录网站,涵盖了文本、图像、视频、音频等多个领域的工具。它为用户寻找合适的AI工具提供了极大的便利,无论是专业人士还是初学者,都能在这里找到满足其需求的工具。该网站提供了详细的分类和搜索功能,帮助用户快速定位到所需的工具。
开源分布式深度学习工具
The Microsoft Cognitive Toolkit(CNTK)是一个开源的商业级分布式深度学习工具。它通过有向图描述神经网络的计算步骤,支持常见的模型类型,并实现了自动微分和并行计算。CNTK支持64位Linux和Windows操作系统,可以作为Python、C或C++程序的库使用,也可以通过其自身的模型描述语言BrainScript作为独立的机器学习工具使用。
一个AI深度学习平台,提供丰富的模型和工具,打造AI创新社区
Neuralhub是一个让深度学习更简单的平台,它为AI爱好者、研究人员和工程师提供实验和创新的环境。我们的目标不仅仅是提供工具,我们还在建立一个社区,一个可以分享和协作的地方。我们致力于通过汇集所有工具、研究和模型到一个协作空间,简化当今的深度学习,使AI研究、学习和开发更容易获取。
AI模型开发与部署
Visnet是一个全面的、无头的、多兼容的神经网络接口框架,主要用于自然语言处理和深度视觉系统。它具有模块化的前端、无服务器架构和多兼容性,并提供了REST API和Websocket接口。它包含了多个核心AI模型,如翻译、车牌识别和人脸特征匹配等。Visnet可广泛应用于监控、无人机检测、图像和视频分析等领域。
秒变艺术品!基于神经网络的照片转画作品
INSTAPAINTING是一款基于神经网络的照片转画作品的工具。用户可以在几秒钟内将自己的照片转换成艺术品,并通过几次点击让艺术家100%手工绘制并将其送到用户手中。该工具已经集成到我们的即时艺术品预览工具中,用户可以在我们的网站上使用。我们的工具可以应用于油画、宠物肖像、人像、婚礼、风景等多种场景。我们的公司总部位于旧金山。
快速AI培训,让神经网络再次不再“酷”
fast.ai是一个提供实用的深度学习课程和软件工具的平台。其课程覆盖了从深度学习基础到稳定扩散的内容。fast.ai为PyTorch提供了fastai软件库,帮助用户在实际项目中应用深度学习。其主要优势在于提供实践导向的教学和易于使用的工具。定价信息可在官网获取。
大场景动作的帧间插值模型
帧间插值(Frame Interpolation)是一种高质量的帧间插值神经网络模型。该模型采用统一的单网络方法,不需要额外的预训练网络,如光流或深度网络,但仍能实现最先进的效果。模型使用多尺度特征提取器,在不同尺度上共享相同的卷积权重。该模型仅通过帧三元组进行训练。
使用 AI 深度卷积神经网络无损放大图片
Bigjpg 是一款使用人工智能深度卷积神经网络(CNN)的图片无损放大工具。它可以将图片放大到 4K 级超高清分辨率,最大可放大 32 倍。通过 Bigjpg,用户可以轻松将低分辨率图片放大至高清或超高清,同时保持图片细节清晰,效果优于传统放大工具如 PhotoZoom。
强大的通用预测学习
通用预测学习器是一种利用元学习的强大方法,能够快速从有限数据中学习新任务。通过广泛接触不同的任务,可以获得通用的表示,从而实现通用问题解决。本产品探索了将最强大的通用预测器——Solomonoff归纳(SI)——通过元学习的方式进行摊销的潜力。我们利用通用图灵机(UTM)生成训练数据,让网络接触到广泛的模式。我们提供了UTM数据生成过程和元训练协议的理论分析。我们使用不同复杂度和普适性的算法数据生成器对神经架构(如LSTM、Transformer)进行了全面的实验。我们的结果表明,UTM数据是元学习的宝贵资源,可以用来训练能够学习通用预测策略的神经网络。
MindOne,一站式AI生成工具
MindOne是一个一站式的AI生成工具App。它整合了多种前沿的AI模型,包括文字生成、图像生成、聊天机器人等功能。用户可以通过MindOne快速生成各种效果的图像,并可以自定义不同的风格和场景。此外,它还内置多种先进的NLP模型,支持智能问答、文本摘要、语音识别等功能。MindOne简单易用的界面设计和合理的价格策略,让普通用户也能无障碍地使用顶级AI技术,开启属于自己的AI之旅。
用于高效表示复杂时空信号的残差神经场
ResFields是一类专门设计用于有效表示复杂时空信号的网络。它将时变权重引入多层感知机中,利用可训练的残差参数增强了模型的表达能力。该方法可以无缝集成到现有技术中,并可显著提高各种具有挑战性的任务的结果,如2D视频逼近、动态形状建模和动态NeRF重建等。
AI法律人,模拟神经元网络对话
法唠AI,也称为法律人工智能,是一种结合了人工智能和法律领域的技术。它利用大语言模型预训练的机器人对法律知识和案例进行深度学习和分析,以提供法律咨询、法律文书撰写、法律案例研究等服务。法唠A|的出现,对律师行业的专业提供方式及案例判例研究方面产生了深远的影响,它能够提供更快速、准确、全面的法服务,同时也为法律行业带来了新的机遇和挑战。
大规模深度循环语言模型的预训练代码,支持在4096个AMD GPU上运行。
该产品是一个用于大规模深度循环语言模型的预训练代码库,基于Python开发。它在AMD GPU架构上进行了优化,能够在4096个AMD GPU上高效运行。该技术的核心优势在于其深度循环架构,能够有效提升模型的推理能力和效率。它主要用于研究和开发高性能的自然语言处理模型,特别是在需要大规模计算资源的场景中。该代码库开源且基于Apache-2.0许可证,适合学术研究和工业应用。
一种用于生成图像的深度学习模型。
SD3-Controlnet-Canny 是一种基于深度学习的图像生成模型,它能够根据用户提供的文本提示生成具有特定风格的图像。该模型利用控制网络技术,可以更精确地控制生成图像的细节和风格,从而提高图像生成的质量和多样性。
人形机器人多功能神经全身控制器
HOVER是一个针对人形机器人的多功能神经全身控制器,它通过模仿全身运动来提供通用的运动技能,学习多种全身控制模式。HOVER通过多模式策略蒸馏框架将不同的控制模式整合到一个统一的策略中,实现了在不同控制模式之间的无缝切换,同时保留了每种模式的独特优势。这种控制器提高了人形机器人在多种模式下的控制效率和灵活性,为未来的机器人应用提供了一个健壮且可扩展的解决方案。
使用最好的神经网络在任何网页上
Chat AI - Chat GPT on all websites是一个插件,可以在任何网页上使用最好的神经网络。它可以帮助你组织回答,创建图像,提取摘要,翻译文本,改善文字等等。该插件可通过网站和Telegram机器人使用。
深度推理翻译模型,通过长思考链优化神经机器翻译。
DRT-o1是一个神经机器翻译模型,它通过长思考链的方式优化翻译过程。该模型通过挖掘含有比喻或隐喻的英文句子,并采用多代理框架(包括翻译者、顾问和评估者)来合成长思考的机器翻译样本。DRT-o1-7B和DRT-o1-14B是基于Qwen2.5-7B-Instruct和Qwen2.5-14B-Instruct训练的大型语言模型。DRT-o1的主要优点在于其能够处理复杂的语言结构和深层次的语义理解,这对于提高机器翻译的准确性和自然性至关重要。
利用大规模机器学习理解场景并连接全球数百万场景的地理空间模型
Niantic的Large Geospatial Model (LGM) 是一个先锋概念,旨在通过大规模机器学习理解场景并将其与全球数百万其他场景连接起来。LGM不仅使计算机能够感知和理解物理空间,还能以新的方式与它们互动,成为AR眼镜及更广泛领域(包括机器人技术、内容创作和自主系统)的关键组成部分。随着我们从手机转向与现实世界相连的可穿戴技术,空间智能将成为世界未来的操作系统。
© 2025 AIbase 备案号:闽ICP备08105208号-14