需求人群:
"GOT-OCR2.0适合需要进行高效、准确文本识别的企业和研究机构,如文档数字化、数据录入、自动化办公等领域。它能够帮助用户自动化文本识别流程,减少人工干预,提高工作效率。"
使用场景示例:
用于图书馆的古籍数字化项目,自动将纸质文档转换为电子文档。
在金融行业中,用于自动化处理大量的财务报表和合同文档。
在医疗领域,辅助医生快速识别和录入病人的病历信息。
产品特色:
支持多种OCR任务,包括普通文本、格式化文本、细粒度OCR等
基于深度学习技术,提供高精度的文本识别
支持多页文档的OCR处理
提供Huggingface部署,方便模型的快速应用
开源代码、权重和基准测试,便于研究和进一步开发
支持在多种硬件和软件环境下运行,包括CUDA和PyTorch
使用教程:
1. 访问GitHub页面,克隆GOT-OCR2.0的代码库到本地。
2. 根据README文档中的说明,安装必要的软件包和依赖。
3. 下载并加载模型权重,可以从Huggingface、Google Drive或百度云获取。
4. 准备训练或测试数据,确保数据格式符合模型要求。
5. 根据需要选择训练或评估模式,运行相应的脚本。
6. 训练完成后,使用模型进行OCR任务,获取识别结果。
7. 可以通过提供的demo脚本查看OCR识别的示例结果。
浏览量:140
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.25%
德国
3.63%
印度
9.32%
俄罗斯
4.28%
美国
19.34%
通过统一的端到端模型实现OCR-2.0
GOT-OCR2.0是一个开源的OCR模型,旨在通过一个统一的端到端模型推动光学字符识别技术向OCR-2.0迈进。该模型支持多种OCR任务,包括但不限于普通文本识别、格式化文本识别、细粒度OCR、多裁剪OCR和多页OCR。它基于最新的深度学习技术,能够处理复杂的文本识别场景,并且具有较高的准确率和效率。
文档智能的视觉引导生成文本布局预训练模型
ViTLP是一个视觉引导的生成文本布局预训练模型,旨在提高文档智能处理的效率和准确性。该模型结合了OCR文本定位和识别功能,能够在文档图像上进行快速准确的文本检测和识别。ViTLP模型的预训练版本ViTLP-medium(380M参数)在计算资源和预训练数据集规模的限制下,提供了一个平衡的解决方案,既保证了模型的性能,又优化了推理速度和内存使用。ViTLP的推理速度在Nvidia 4090上处理一页文档图像通常在5到10秒内,与大多数OCR引擎相比具有竞争力。
从实体书籍中提取划线或手写标记的文本
Excerptor是一个专门设计来从实体书籍中提取划线或手写标记文本的工具。它通过图像处理和光学字符识别技术,将书籍中的标记文本转换为数字格式,方便用户编辑和保存。这项技术的重要性在于它能够帮助用户快速从大量书籍中提取关键信息,提高研究和学习的效率。Excerptor以其高效、准确的文本识别能力和用户友好的操作界面,满足了学术研究、教育和个人学习等不同领域的需求。目前,Excerptor是免费提供给用户的,它的开发和维护由开源社区负责。
手写文本识别和字符检测模型
DTLR是一个基于检测的手写文本行识别模型,基于DINO-DETR进行改进,用于文本识别和字符检测。该模型在合成数据上预训练,然后在真实数据集上进行微调。它对于OCR(光学字符识别)领域具有重要意义,特别是在处理手写文本时,能够提高识别的准确性和效率。
高效CPU本地离线LaTeX识别工具
MixTeX是一个创新的多模态LaTeX识别小程序,由团队独立开发,能够在本地离线环境中执行高效的基于CPU的推理。无论是LaTeX公式、表格还是混合文本,MixTeX都能轻松识别,支持中英文处理。得益于强大的技术支持和优化设计,MixTeX无需GPU资源即可高效运行,适合任何Windows电脑,极大地方便了用户体验。
快速、多语言支持的OCR工具包
RapidOCR是一个基于ONNXRuntime、OpenVINO和PaddlePaddle的OCR多语言工具包。它将PaddleOCR模型转换为ONNX格式,支持Python/C++/Java/C#等多平台部署,具有快速、轻量级、智能的特点,并解决了PaddleOCR内存泄露的问题。
开源的基于深度文档理解的RAG(检索增强生成)引擎
RAGFlow是一个开源的RAG(Retrieval-Augmented Generation)引擎,基于深度文档理解,提供流线型的RAG工作流程,适用于各种规模的企业。它结合了大型语言模型(LLM)提供真实的问答能力,支持从各种复杂格式数据中引用确凿的引文。
快速扫描和转换文本
OCR Magic是一款终极文本识别应用,支持几乎所有语言。借助我们先进的光学字符识别技术,您可以轻松扫描和转换图像和文档中的文本为可编辑和可搜索的数字文本。 无论您是学生、专业人士还是只想简化工作流程,OCR Magic都能满足您的需求。只需上传图像或文档,我们的应用程序将快速提取文本并将其翻译为您选择的语言。不再需要重新输入或手动转录 - OCR Magic使得处理任何来源的文本变得轻松。 但这还不是全部 - OCR Magic还配备了一系列有用的功能,以增强您的文本识别体验。支持多种文件格式、自动语言检测和可定制的输出选项,您可以根据自己的需求定制我们的应用程序。 不要再浪费时间手动转录文本 - 立即尝试OCR Magic,革新您的文本识别工作流程!
OCR解决方案API | 文档OCR文本识别
Pixl OCR Solution API是一款高效的OCR解决方案API,可以简化文档OCR文本识别流程。轻松从图像和文档中提取文本,实现快速信息检索。通过集成我们强大的API,不仅可以降低劳动成本,还能实现更快速和更明智的决策。
一款轻量级的多模态语言模型安卓应用。
MNN-LLM 是一款高效的推理框架,旨在优化和加速大语言模型在移动设备和本地 PC 上的部署。它通过模型量化、混合存储和硬件特定优化,解决高内存消耗和计算成本的问题。MNN-LLM 在 CPU 基准测试中表现卓越,速度显著提升,适合需要隐私保护和高效推理的用户。
DreamO 是一个统一的图像定制框架。
DreamO 是一种先进的图像定制模型,旨在提高图像生成的保真度和灵活性。该框架结合了 VAE 特征编码,适用于各种输入,特别是在角色身份的保留方面表现出色。支持消费级 GPU,具有 8 位量化和 CPU 卸载功能,适应不同硬件环境。该模型的不断更新使其在解决过度饱和和面部塑料感问题上取得了一定进展,旨在为用户提供更优质的图像生成体验。
高效的视觉编码技术,提升视觉语言模型性能。
FastVLM 是一种高效的视觉编码模型,专为视觉语言模型设计。它通过创新的 FastViTHD 混合视觉编码器,减少了高分辨率图像的编码时间和输出的 token 数量,使得模型在速度和精度上表现出色。FastVLM 的主要定位是为开发者提供强大的视觉语言处理能力,适用于各种应用场景,尤其在需要快速响应的移动设备上表现优异。
智能文档处理AI平台,利用AI、机器学习和OCR技术自动化数据提取、分类和组织各种文档类型。
docsynecx是一款智能文档处理AI平台,通过AI、机器学习和OCR技术,自动化处理各种文档类型,包括发票处理、收据、提单等。该平台能够快速准确地提取、分类和组织结构化、半结构化和非结构化数据。
基于自回归变换器生成人工制作的 3D 原始装配体。
PrimitiveAnything 是一种利用自回归变换器生成 3D 模型的技术,能够自动创建细致的 3D 原始装配体。这项技术的主要优点在于其能通过深度学习快速生成复杂的 3D 形状,从而极大地提高了设计师的工作效率。该产品适用于各类设计应用,价格为免费使用,定位于 3D 建模领域。
一个社区驱动的深度研究框架,结合语言模型与多种工具。
DeerFlow 是一个深度研究框架,旨在结合语言模型与如网页搜索、爬虫及 Python 执行等专用工具,以推动深入研究工作。该项目源于开源社区,强调贡献回馈,具备多种灵活的功能,适合各类研究需求。
一种高效的无泄漏唇同步技术。
KeySync 是一个针对高分辨率视频的无泄漏唇同步框架。它解决了传统唇同步技术中的时间一致性问题,同时通过巧妙的遮罩策略处理表情泄漏和面部遮挡。KeySync 的优越性体现在其在唇重建和跨同步方面的先进成果,适用于自动配音等实际应用场景。
一款高质量的英语自动语音识别模型,支持标点符号和时间戳预测。
parakeet-tdt-0.6b-v2 是一个 600 百万参数的自动语音识别(ASR)模型,旨在实现高质量的英语转录,具有准确的时间戳预测和自动标点符号、大小写支持。该模型基于 FastConformer 架构,能够高效地处理长达 24 分钟的音频片段,适合开发者、研究人员和各行业应用。
用于理解任意视频中的相机运动的工具。
CameraBench 是一个用于分析视频中相机运动的模型,旨在通过视频理解相机的运动模式。它的主要优点在于利用生成性视觉语言模型进行相机运动的原理分类和视频文本检索。通过与传统的结构从运动 (SfM) 和实时定位与*构建 (SLAM) 方法进行比较,该模型在捕捉场景语义方面显示出了显著的优势。该模型已开源,适合研究人员和开发者使用,且后续将推出更多改进版本。
F Lite 是一款 10B 参数的扩散模型,专注于合法和安全内容。
F Lite 是由 Freepik 和 Fal 开发的一个大型扩散模型,具有 100 亿个参数,专门训练于版权安全和适合工作环境 (SFW) 的内容。该模型基于 Freepik 的内部数据集,包含约 8000 万张合法合规的图像,标志着公开可用的模型在这一规模上首次专注于合法和安全的内容。它的技术报告提供了详细的模型信息,并且使用了 CreativeML Open RAIL-M 许可证进行分发。该模型的设计旨在推动人工智能的开放性和可用性。
Kimi-Audio 是一个开源音频基础模型,擅长音频理解与生成。
Kimi-Audio 是一个先进的开源音频基础模型,旨在处理多种音频处理任务,如语音识别和音频对话。该模型在超过 1300 万小时的多样化音频数据和文本数据上进行了大规模预训练,具有强大的音频推理和语言理解能力。它的主要优点包括优秀的性能和灵活性,适合研究人员和开发者进行音频相关的研究与开发。
一个基于深度学习的图像和视频描述模型。
Describe Anything 模型(DAM)能够处理图像或视频的特定区域,并生成详细描述。它的主要优点在于可以通过简单的标记(点、框、涂鸦或掩码)来生成高质量的本地化描述,极大地提升了计算机视觉领域的图像理解能力。该模型由 NVIDIA 和多所大学联合开发,适合用于研究、开发和实际应用中。
开放源代码的 8B 参数文本到图像扩散模型。
Flex.2 是当前最灵活的文本到图像扩散模型,具备内置的重绘和通用控制功能。它是一个开源项目,由社区支持,旨在推动人工智能的民主化。Flex.2 具备 8 亿参数,支持 512 个令牌长度输入,并符合 OSI 的 Apache 2.0 许可证。此模型可以在许多创意项目中提供强大的支持。用户可以通过反馈不断改善模型,推动技术进步。
轻量级嵌套架构,用于语音反欺诈。
Nes2Net 是一个为基础模型驱动的语音反欺诈任务设计的轻量级嵌套架构,具有较低的错误率,适用于音频深度假造检测。该模型在多个数据集上表现优异,预训练模型和代码已在 GitHub 上发布,便于研究人员和开发者使用。适合音频处理和安全领域,主要定位于提高语音识别和反欺诈的效率和准确性。
利用强化学习提升扩散大语言模型的推理能力。
该模型通过强化学习和高质量推理轨迹的掩蔽自监督微调,实现了对扩散大语言模型的推理能力的提升。此技术的重要性在于它能够优化模型的推理过程,减少计算成本,同时保证学习动态的稳定性。适合希望在写作和推理任务中提升效率的用户。
开源视频生成模型,支持多种生成任务。
Wan2.1-FLF2V-14B 是一个开源的大规模视频生成模型,旨在推动视频生成领域的进步。该模型在多项基准测试中表现优异,支持消费者级 GPU,能够高效生成 480P 和 720P 的视频。它在文本到视频、图像到视频等多个任务中表现出色,具有强大的视觉文本生成能力,适用于各种实际应用场景。
用于视频生成的下一帧预测模型。
FramePack 是一个创新的视频生成模型,旨在通过压缩输入帧的上下文来提高视频生成的质量和效率。其主要优点在于解决了视频生成中的漂移问题,通过双向采样方法保持视频质量,适合需要生成长视频的用户。该技术背景来源于对现有模型的深入研究和实验,以改进视频生成的稳定性和连贯性。
一个集成视觉理解和生成的多模态生成模型。
Liquid 是一个自回归生成模型,通过将图像分解为离散代码并与文本标记共享特征空间,促进视觉理解和文本生成的无缝集成。此模型的主要优点在于无需外部预训练的视觉嵌入,减少了对资源的依赖,同时通过规模法则发现了理解与生成任务之间的相互促进效应。
© 2025 AIbase 备案号:闽ICP备08105208号-14