需求人群:
"GOT-OCR2.0适合需要进行高效、准确文本识别的企业和研究机构,如文档数字化、数据录入、自动化办公等领域。它能够帮助用户自动化文本识别流程,减少人工干预,提高工作效率。"
使用场景示例:
用于图书馆的古籍数字化项目,自动将纸质文档转换为电子文档。
在金融行业中,用于自动化处理大量的财务报表和合同文档。
在医疗领域,辅助医生快速识别和录入病人的病历信息。
产品特色:
支持多种OCR任务,包括普通文本、格式化文本、细粒度OCR等
基于深度学习技术,提供高精度的文本识别
支持多页文档的OCR处理
提供Huggingface部署,方便模型的快速应用
开源代码、权重和基准测试,便于研究和进一步开发
支持在多种硬件和软件环境下运行,包括CUDA和PyTorch
使用教程:
1. 访问GitHub页面,克隆GOT-OCR2.0的代码库到本地。
2. 根据README文档中的说明,安装必要的软件包和依赖。
3. 下载并加载模型权重,可以从Huggingface、Google Drive或百度云获取。
4. 准备训练或测试数据,确保数据格式符合模型要求。
5. 根据需要选择训练或评估模式,运行相应的脚本。
6. 训练完成后,使用模型进行OCR任务,获取识别结果。
7. 可以通过提供的demo脚本查看OCR识别的示例结果。
浏览量:137
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
通过统一的端到端模型实现OCR-2.0
GOT-OCR2.0是一个开源的OCR模型,旨在通过一个统一的端到端模型推动光学字符识别技术向OCR-2.0迈进。该模型支持多种OCR任务,包括但不限于普通文本识别、格式化文本识别、细粒度OCR、多裁剪OCR和多页OCR。它基于最新的深度学习技术,能够处理复杂的文本识别场景,并且具有较高的准确率和效率。
文档智能的视觉引导生成文本布局预训练模型
ViTLP是一个视觉引导的生成文本布局预训练模型,旨在提高文档智能处理的效率和准确性。该模型结合了OCR文本定位和识别功能,能够在文档图像上进行快速准确的文本检测和识别。ViTLP模型的预训练版本ViTLP-medium(380M参数)在计算资源和预训练数据集规模的限制下,提供了一个平衡的解决方案,既保证了模型的性能,又优化了推理速度和内存使用。ViTLP的推理速度在Nvidia 4090上处理一页文档图像通常在5到10秒内,与大多数OCR引擎相比具有竞争力。
从实体书籍中提取划线或手写标记的文本
Excerptor是一个专门设计来从实体书籍中提取划线或手写标记文本的工具。它通过图像处理和光学字符识别技术,将书籍中的标记文本转换为数字格式,方便用户编辑和保存。这项技术的重要性在于它能够帮助用户快速从大量书籍中提取关键信息,提高研究和学习的效率。Excerptor以其高效、准确的文本识别能力和用户友好的操作界面,满足了学术研究、教育和个人学习等不同领域的需求。目前,Excerptor是免费提供给用户的,它的开发和维护由开源社区负责。
手写文本识别和字符检测模型
DTLR是一个基于检测的手写文本行识别模型,基于DINO-DETR进行改进,用于文本识别和字符检测。该模型在合成数据上预训练,然后在真实数据集上进行微调。它对于OCR(光学字符识别)领域具有重要意义,特别是在处理手写文本时,能够提高识别的准确性和效率。
高效CPU本地离线LaTeX识别工具
MixTeX是一个创新的多模态LaTeX识别小程序,由团队独立开发,能够在本地离线环境中执行高效的基于CPU的推理。无论是LaTeX公式、表格还是混合文本,MixTeX都能轻松识别,支持中英文处理。得益于强大的技术支持和优化设计,MixTeX无需GPU资源即可高效运行,适合任何Windows电脑,极大地方便了用户体验。
快速、多语言支持的OCR工具包
RapidOCR是一个基于ONNXRuntime、OpenVINO和PaddlePaddle的OCR多语言工具包。它将PaddleOCR模型转换为ONNX格式,支持Python/C++/Java/C#等多平台部署,具有快速、轻量级、智能的特点,并解决了PaddleOCR内存泄露的问题。
开源的基于深度文档理解的RAG(检索增强生成)引擎
RAGFlow是一个开源的RAG(Retrieval-Augmented Generation)引擎,基于深度文档理解,提供流线型的RAG工作流程,适用于各种规模的企业。它结合了大型语言模型(LLM)提供真实的问答能力,支持从各种复杂格式数据中引用确凿的引文。
快速扫描和转换文本
OCR Magic是一款终极文本识别应用,支持几乎所有语言。借助我们先进的光学字符识别技术,您可以轻松扫描和转换图像和文档中的文本为可编辑和可搜索的数字文本。 无论您是学生、专业人士还是只想简化工作流程,OCR Magic都能满足您的需求。只需上传图像或文档,我们的应用程序将快速提取文本并将其翻译为您选择的语言。不再需要重新输入或手动转录 - OCR Magic使得处理任何来源的文本变得轻松。 但这还不是全部 - OCR Magic还配备了一系列有用的功能,以增强您的文本识别体验。支持多种文件格式、自动语言检测和可定制的输出选项,您可以根据自己的需求定制我们的应用程序。 不要再浪费时间手动转录文本 - 立即尝试OCR Magic,革新您的文本识别工作流程!
OCR解决方案API | 文档OCR文本识别
Pixl OCR Solution API是一款高效的OCR解决方案API,可以简化文档OCR文本识别流程。轻松从图像和文档中提取文本,实现快速信息检索。通过集成我们强大的API,不仅可以降低劳动成本,还能实现更快速和更明智的决策。
一款先进的视觉推理模型,能分析图片和视频内容。
QVQ-Max 是 Qwen 团队推出的视觉推理模型,能够理解和分析图像及视频内容,提供解决方案。它不仅限于文本输入,更能够处理复杂的视觉信息。适合需要多模态信息处理的用户,如教育、工作和生活场景。该产品是基于深度学习和计算机视觉技术开发,适用于学生、职场人士和创意工作者。此版本为首发,后续将持续优化。
一款用于生成信息图表的视觉文本渲染工具。
BizGen 是一个先进的模型,专注于文章级别的视觉文本渲染,旨在提升信息图表的生成质量和效率。该产品利用深度学习技术,能够准确渲染多种语言的文本,提升信息的可视化效果。适合研究人员和开发者使用,助力创造更具吸引力的视觉内容。
通过测试时间缩放显著提升视频生成质量。
Video-T1 是一个视频生成模型,通过测试时间缩放技术(TTS)显著提升生成视频的质量和一致性。该技术允许在推理过程中使用更多的计算资源,从而优化生成结果。相较于传统的视频生成方法,TTS 能够提供更高的生成质量和更丰富的内容表达,适用于数字创作领域。该产品的定位主要面向研究人员和开发者,价格信息未明确。
RF-DETR 是由 Roboflow 开发的实时目标检测模型。
RF-DETR 是一个基于变压器的实时目标检测模型,旨在为边缘设备提供高精度和实时性能。它在 Microsoft COCO 基准测试中超过了 60 AP,具有竞争力的性能和快速的推理速度,适合各种实际应用场景。RF-DETR 旨在解决现实世界中的物体检测问题,适用于需要高效且准确检测的行业,如安防、自动驾驶和智能监控等。
业界首个超大规模混合 Mamba 推理模型,强推理能力。
混元T1 是腾讯推出的超大规模推理模型,基于强化学习技术,通过大量后训练显著提升推理能力。它在长文处理和上下文捕捉上表现突出,同时优化了计算资源的消耗,具备高效的推理能力。适用于各类推理任务,尤其在数学、逻辑推理等领域表现优异。该产品以深度学习为基础,结合实际反馈不断优化,适合科研、教育等多个领域的应用。
实现灵活且高保真度的图像生成,同时保持身份特征。
InfiniteYou(InfU)是一个基于扩散变换器的强大框架,旨在实现灵活的图像重构,并保持用户身份。它通过引入身份特征并采用多阶段训练策略,显著提升了图像生成的质量和美学,同时改善了文本与图像的对齐。该技术对提高图像生成的相似性和美观性具有重要意义,适用于各种图像生成任务。
Pruna 是一个模型优化框架,帮助开发者快速高效交付模型。
Pruna 是一个为开发者设计的模型优化框架,通过一系列压缩算法,如量化、修剪和编译等技术,使得机器学习模型在推理时更快、体积更小且计算成本更低。产品适用于多种模型类型,包括 LLMs、视觉转换器等,且支持 Linux、MacOS 和 Windows 等多个平台。Pruna 还提供了企业版 Pruna Pro,解锁更多高级优化功能和优先支持,助力用户在实际应用中提高效率。
一种提升场景级视频生成能力的技术。
长上下文调优(LCT)旨在解决当前单次生成能力与现实叙事视频制作之间的差距。该技术通过数据驱动的方法直接学习场景级一致性,支持交互式多镜头开发和合成生成,适用于视频制作的各个方面。
一种无混叠的任意尺度超分辨率方法。
Thera 是一种先进的超分辨率技术,能够在不同尺度下生成高质量图像。其主要优点在于内置物理观察模型,有效避免了混叠现象。该技术由 ETH Zurich 的研究团队开发,适用于图像增强和计算机视觉领域,尤其在遥感和摄影测量中具有广泛应用。
Mistral OCR 是一款强大的文档理解 OCR 产品,能够以极高的准确性从 PDF 和图像中提取文本、图像、表格和方程式。
Mistral OCR 是由 Mistral AI 开发的先进光学字符识别 API,旨在以无与伦比的准确性提取和结构化文档内容。它能够处理包含文本、图像、表格和方程式的复杂文档,输出 Markdown 格式的结果,便于与 AI 系统和检索增强生成(RAG)系统集成。其高精度、高速度和多模态处理能力使其在大规模文档处理场景中表现出色,尤其适用于科研、法律、客服和历史文献保护等领域。Mistral OCR 的定价为每美元 1000 页标准使用量,批量处理可达每美元 2000 页,还提供企业自托管选项,满足特定隐私需求。
Inductive Moment Matching 是一种新型的生成模型,用于高质量图像生成。
Inductive Moment Matching (IMM) 是一种先进的生成模型技术,主要用于高质量图像生成。该技术通过创新的归纳矩匹配方法,显著提高了生成图像的质量和多样性。其主要优点包括高效性、灵活性以及对复杂数据分布的强大建模能力。IMM 由 Luma AI 和斯坦福大学的研究团队开发,旨在推动生成模型领域的发展,为图像生成、数据增强和创意设计等应用提供强大的技术支持。该项目开源了代码和预训练模型,方便研究人员和开发者快速上手和应用。
通过多实例扩散模型将单张图像生成高保真度的3D场景。
MIDI是一种创新的图像到3D场景生成技术,它利用多实例扩散模型,能够从单张图像中直接生成具有准确空间关系的多个3D实例。该技术的核心在于其多实例注意力机制,能够有效捕捉物体间的交互和空间一致性,无需复杂的多步骤处理。MIDI在图像到场景生成领域表现出色,适用于合成数据、真实场景数据以及由文本到图像扩散模型生成的风格化场景图像。其主要优点包括高效性、高保真度和强大的泛化能力。
R1-Omni 是一个结合强化学习的全模态情绪识别模型,专注于提升多模态情绪识别的可解释性。
R1-Omni 是一个创新的多模态情绪识别模型,通过强化学习提升模型的推理能力和泛化能力。该模型基于 HumanOmni-0.5B 开发,专注于情绪识别任务,能够通过视觉和音频模态信息进行情绪分析。其主要优点包括强大的推理能力、显著提升的情绪识别性能以及在分布外数据上的出色表现。该模型适用于需要多模态理解的场景,如情感分析、智能客服等领域,具有重要的研究和应用价值。
VideoPainter 是一款支持任意长度视频修复和编辑的工具,采用文本引导的插件式框架。
VideoPainter 是一款基于深度学习的视频修复和编辑工具,采用预训练的扩散变换器模型,结合轻量级背景上下文编码器和 ID 重采样技术,能够实现高质量的视频修复和编辑。该技术的重要性在于它突破了传统视频修复方法在长度和复杂度上的限制,为视频创作者提供了一种高效、灵活的工具。产品目前处于研究阶段,暂未明确价格,主要面向视频编辑领域的专业用户和研究人员。
Flux 是一个用于 GPU 上张量/专家并行的快速通信重叠库。
Flux 是由字节跳动开发的一个高性能通信重叠库,专为 GPU 上的张量和专家并行设计。它通过高效的内核和对 PyTorch 的兼容性,支持多种并行化策略,适用于大规模模型训练和推理。Flux 的主要优点包括高性能、易于集成和对多种 NVIDIA GPU 架构的支持。它在大规模分布式训练中表现出色,尤其是在 Mixture-of-Experts (MoE) 模型中,能够显著提高计算效率。
HunyuanVideo-I2V 是腾讯推出的基于 HunyuanVideo 的图像到视频生成框架。
HunyuanVideo-I2V 是腾讯开源的图像到视频生成模型,基于 HunyuanVideo 架构开发。该模型通过图像潜在拼接技术,将参考图像信息有效整合到视频生成过程中,支持高分辨率视频生成,并提供可定制的 LoRA 效果训练功能。该技术在视频创作领域具有重要意义,能够帮助创作者快速生成高质量的视频内容,提升创作效率。
Aya Vision 32B 是一个支持多语言的视觉语言模型,适用于OCR、图像描述、视觉推理等多种用途。
Aya Vision 32B 是由 Cohere For AI 开发的先进视觉语言模型,拥有 320 亿参数,支持 23 种语言,包括英语、中文、阿拉伯语等。该模型结合了最新的多语言语言模型 Aya Expanse 32B 和 SigLIP2 视觉编码器,通过多模态适配器实现视觉与语言理解的结合。它在视觉语言领域表现出色,能够处理复杂的图像与文本任务,如 OCR、图像描述、视觉推理等。该模型的发布旨在推动多模态研究的普及,其开源权重为全球研究人员提供了强大的工具。该模型遵循 CC-BY-NC 许可证,并需遵守 Cohere For AI 的合理使用政策。
8亿参数的多语言视觉语言模型,支持OCR、图像描述、视觉推理等功能
CohereForAI的Aya Vision 8B是一个8亿参数的多语言视觉语言模型,专为多种视觉语言任务优化,支持OCR、图像描述、视觉推理、总结、问答等功能。该模型基于C4AI Command R7B语言模型,结合SigLIP2视觉编码器,支持23种语言,具有16K上下文长度。其主要优点包括多语言支持、强大的视觉理解能力以及广泛的适用场景。该模型以开源权重形式发布,旨在推动全球研究社区的发展。根据CC-BY-NC许可协议,用户需遵守C4AI的可接受使用政策。
QwQ-32B 是一款强大的推理模型,专为复杂问题解决和文本生成设计,性能卓越。
QwQ-32B 是 Qwen 系列的推理模型,专注于复杂问题的思考和推理能力。它在下游任务中表现出色,尤其是在解决难题方面。该模型基于 Qwen2.5 架构,经过预训练和强化学习优化,具有 325 亿参数,支持 131072 个完整上下文长度的处理能力。其主要优点包括强大的推理能力、高效的长文本处理能力和灵活的部署选项。该模型适用于需要深度思考和复杂推理的场景,如学术研究、编程辅助和创意写作等。
© 2025 AIbase 备案号:闽ICP备08105208号-14