需求人群:
"目标受众为研究人员、开发者和教育机构,他们可以利用ExploreToM生成的数据来训练和评估心理理论推理的模型,进而提升人工智能在理解人类心理状态方面的能力。"
使用场景示例:
研究人员使用ExploreToM生成的数据训练心理理论推理模型。
教育机构利用该框架创建教学案例,帮助学生理解心理理论。
开发者使用ExploreToM框架来测试和改进他们的聊天机器人或虚拟助手。
产品特色:
生成故事背景:使用story_context_generator.py脚本生成故事背景。
执行A*搜索:通过story_structure_searcher.py脚本执行A*搜索,以产生复杂的故事结构。
填充生成的故事:利用story_structure_infiller.py脚本填充生成的故事。
统计分析:通过compute_statistics.py脚本对生成的数据进行统计分析。
功能测试:运行tests_belief_tracker.py和tests_story_structure_infiller.py进行功能测试。
模型加载:使用VLLM(大型语言模型)加载和运行模型。
使用教程:
1. 安装必要的Python环境和依赖。
2. 使用story_context_generator.py生成故事背景。
3. 通过story_structure_searcher.py执行A*搜索,生成复杂的故事结构。
4. 利用story_structure_infiller.py填充生成的故事。
5. 运行compute_statistics.py对生成的数据进行统计分析。
6. 通过tests_belief_tracker.py和tests_story_structure_infiller.py进行功能测试。
7. 根据需要加载和使用VLLM模型。
浏览量:4
最新流量情况
月访问量
4.95m
平均访问时长
00:06:29
每次访问页数
5.68
跳出率
37.69%
流量来源
直接访问
51.66%
自然搜索
33.21%
邮件
0.04%
外链引荐
12.84%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.79%
德国
3.71%
印度
9.03%
俄罗斯
4.40%
美国
18.49%
大规模生成多样且具有挑战性的心理理论数据的框架
ExploreToM是由Facebook Research开发的一个框架,旨在大规模生成多样化和具有挑战性的心理理论数据,用于强化大型语言模型(LLMs)的训练和评估。该框架利用A*搜索算法在自定义的领域特定语言上生成复杂的故事结构和新颖、多样化且合理的情景,以测试LLMs的极限。
LG AI Research开发的多语言、高性能大型语言模型
EXAONE-3.5-32B-Instruct-GGUF是LG AI Research开发的一系列指令调优的双语(英语和韩语)生成模型,包含2.4B至32B参数的不同版本。这些模型支持长达32K令牌的长上下文处理,展现了在真实世界用例和长上下文理解中的最前沿性能,同时在与近期发布的类似规模模型相比,在通用领域保持竞争力。该模型系列通过技术报告、博客和GitHub提供了详细信息,并且包含了多种精度的指令调优32B语言模型,具有以下特点:参数数量(不含嵌入)为30.95B,层数为64,注意力头数为GQA,包含40个Q头和8个KV头,词汇量为102,400,上下文长度为32,768令牌,量化包括Q8_0、Q6_0、Q5_K_M、Q4_K_M、IQ4_XS等GGUF格式(也包括BF16权重)。
自然语言计算的无限画布
tldraw computer是一个实验性项目,由tldraw团队开发,旨在提供一个无限的画布,用户可以在上面创建连接组件的工作流,以生成和转换数据。该产品使用多模态语言模型作为运行时来执行指令,代表了自然语言处理和工作流自动化的前沿技术。它的重要性在于能够简化复杂任务,提高工作效率,并促进创新。tldraw computer背景深厚,由tldraw SDK的开发者打造,该SDK用于无限画布应用,并且与流行的免费协作白板tldraw.com相关联。产品目前免费试用,主要面向需要数据生成和工作流自动化的专业人士和企业。
通用型物理引擎,用于机器人学和物理AI应用
Genesis是一个全面物理仿真平台,专为机器人学、具身AI和物理AI应用设计。它是一个从头构建的通用物理引擎,能够模拟广泛的材料和物理现象。作为一个轻量级、超快速、Pythonic且用户友好的机器人仿真平台,它还具备强大的真实感渲染系统和将自然语言描述转换为各种数据模态的生成数据引擎。Genesis通过其核心物理引擎的集成,进一步增强了上层的生成代理框架,旨在为机器人学及其它领域实现全自动数据生成。
可扩展的流媒体语音合成技术,结合大型语言模型。
CosyVoice 2是由阿里巴巴集团的SpeechLab@Tongyi团队开发的语音合成模型,它基于监督离散语音标记,并结合了两种流行的生成模型:语言模型(LMs)和流匹配,实现了高自然度、内容一致性和说话人相似性的语音合成。该模型在多模态大型语言模型(LLMs)中具有重要的应用,特别是在交互体验中,响应延迟和实时因素对语音合成至关重要。CosyVoice 2通过有限标量量化提高语音标记的码本利用率,简化了文本到语音的语言模型架构,并设计了块感知的因果流匹配模型以适应不同的合成场景。它在大规模多语言数据集上训练,实现了与人类相当的合成质量,并具有极低的响应延迟和实时性。
基于自由画布的创作平台,激发创作灵感。
Refly是一个AI Native创作引擎,通过多线程对话、知识库整合、上下文记忆和智能搜索等技术,帮助用户将创意转化为优质内容。它覆盖了学术研究、技术文档等20+专业场景模板,AI协助分析主题,智能构建研究框架,基于个人知识库持续积累,建立深度思维链接。Refly的主要优点在于其强大的AI辅助功能和个性化的创作环境,它能够提升学术和技术写作效率,确保专业输出质量。
快速高效的生成型AI模型
Command R7B是Cohere公司推出的一款高性能、可扩展的大型语言模型(LLM),专为企业级应用设计。它在保持较小模型体积的同时,提供了一流的速度、效率和质量,能够在普通的GPU、边缘设备甚至CPU上部署,大幅降低了AI应用的生产部署成本。Command R7B在多语言支持、引用验证检索增强生成(RAG)、推理、工具使用和代理行为等方面表现出色,特别适合需要优化速度、成本性能和计算资源的企业使用案例。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-4B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上进行了核心模型架构的维护,并在训练和测试策略以及数据质量上进行了显著增强。该模型在处理图像、文本到文本的任务中表现出色,特别是在多模态推理、数学问题解决、OCR、图表和文档理解等方面。作为开源模型,它为研究人员和开发者提供了强大的工具,以探索和构建基于视觉和语言的智能应用。
个人电脑AI性能基准测试
MLPerf Client是由MLCommons共同开发的新基准测试,旨在评估个人电脑(从笔记本、台式机到工作站)上大型语言模型(LLMs)和其他AI工作负载的性能。该基准测试通过模拟真实世界的AI任务,提供清晰的指标,以了解系统如何处理生成性AI工作负载。MLPerf Client工作组希望这个基准测试能够推动创新和竞争,确保个人电脑能够应对AI驱动的未来挑战。
多模态大型语言模型,支持图像与文本的深度交互
InternVL 2.5 是一个先进的多模态大型语言模型系列,它在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,维持了其核心模型架构。该模型整合了新增量预训练的InternViT与各种预训练的大型语言模型,例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5 支持多图像和视频数据,具备动态高分辨率训练方法,能够在处理多模态数据时提供更好的性能。
多模态大型语言模型,支持图像和文本理解
InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),它在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,保持了其核心模型架构。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5支持多图像和视频数据,通过动态高分辨率训练方法,增强了模型处理多模态数据的能力。
Google新一代AI模型,开启智能助理新时代。
Gemini 2.0是Google DeepMind推出的最新AI模型,旨在为“智能助理时代”提供支持。该模型在多模态能力上进行了升级,包括原生图像和音频输出以及工具使用能力,使得构建新的AI智能助理更加接近通用助理的愿景。Gemini 2.0的发布,标志着Google在AI领域的深入探索和持续创新,通过提供更强大的信息处理和输出能力,使得信息更加有用,为用户带来更高效和便捷的体验。
Reddit的新问答功能,通过AI技术获取社区信息和讨论。
Reddit Answers是Reddit推出的一个新功能,旨在通过AI技术,让用户能够从Reddit社区中获取信息、建议、讨论和观点。这个功能通过AI驱动的对话界面,让用户可以提出问题,并从Reddit的各个社区中获得相关讨论的汇总,包括相关社区和帖子的链接。Reddit Answers的推出是为了改善Reddit的搜索体验,使其更快、更智能、更相关。目前,Reddit Answers仅在美国的有限用户中推出,并且目前只支持英语,未来计划扩展到其他语言和地区。
多模态大型语言模型,支持图像与文本的交互理解。
InternVL2_5-8B是由OpenGVLab开发的一款多模态大型语言模型(MLLM),它在InternVL 2.0的基础上进行了显著的训练和测试策略增强,以及数据质量提升。该模型采用'ViT-MLP-LLM'架构,集成了新增量预训练的InternViT与多种预训练语言模型,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP projector。InternVL 2.5系列模型在多模态任务上展现出卓越的性能,包括图像和视频理解、多语言理解等。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-26B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型保持了其前身的“ViT-MLP-LLM”核心模型架构,并集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5系列模型在多模态任务中展现出卓越的性能,尤其在视觉感知和多模态能力方面。
先进的多模态大型语言模型系列
InternVL 2.5是OpenGVLab推出的多模态大型语言模型系列,它在InternVL 2.0的基础上进行了显著的训练和测试策略增强,以及数据质量提升。该模型系列能够处理图像、文本和视频数据,具备多模态理解和生成的能力,是当前多模态人工智能领域的前沿产品。InternVL 2.5系列模型以其高性能和开源特性,为多模态任务提供了强大的支持。
先进多模态大型语言模型系列
InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型系列在视觉感知和多模态能力方面进行了优化,支持包括图像、文本到文本的转换在内的多种功能,适用于需要处理视觉和语言信息的复杂任务。
70亿参数的多语言大型语言模型
Llama-3.3-70B-Instruct是由Meta开发的一个70亿参数的大型语言模型,专门针对多语言对话场景进行了优化。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来提高其有用性和安全性。它支持多种语言,并能够处理文本生成任务,是自然语言处理领域的一项重要技术。
多功能代码沙箱,适用于大型语言模型。
Sandbox Fusion是一个多功能代码沙箱,专为大型语言模型(LLMs)设计。它支持多达20种编程语言,能够全面测试包括编程、数学和硬件编程在内的多个领域。Sandbox Fusion集成了超过10个与编码相关的评估数据集,这些数据集具有标准化的数据格式,并且可以通过统一的HTTP API访问。此外,Sandbox Fusion针对云基础设施部署进行了优化,并在有特权容器时提供内置的安全隔离。产品背景信息显示,Sandbox Fusion由字节跳动有限公司开发,旨在为开发者提供一个安全、高效的代码测试环境。
探索AI前沿,精选国内外AI产品与应用。
智趣AI甄选是一个专注于人工智能领域的综合性平台,旨在洞察行业发展前景,精选并展示国内外的AI产品与应用。平台提供丰富的学习资源,行业融合案例分析,助力用户洞悉AI发展趋势,与AI技术同行,共创未来。
突破性网络搜索工具
Exa Websets 是一款致力于提供完美网络搜索体验的产品。它使用Exa的网络规模向量搜索技术,通过语义查找结果,确保每个搜索结果都经过AI代理的研究和验证,以确保准确性。用户无需复杂的过滤器或令人困惑的界面,只需用简单的英语写出查询即可。Exa Websets 适用于销售、招聘、投资、研究和好奇心驱动的探索,是知识工作者的AI驱动定制数据拉取工具。
基于大型语言模型的主动式代理,预测用户需求并主动提供帮助。
ProactiveAgent是一个基于大型语言模型(LLM)的主动式代理项目,旨在构建一个能够预测用户需求并主动提供帮助的智能代理。该项目通过数据收集和生成管道、自动评估器和训练代理来实现这一目标。ProactiveAgent的主要优点包括环境感知、协助标注、动态数据生成和构建管道,其奖励模型在测试集上达到了0.918的F1分数,显示出良好的性能。该产品背景信息显示,它适用于编程、写作和日常生活场景,并且遵循Apache License 2.0协议。
7B参数的大型语言模型,提升自然语言处理能力
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
高效长序列大型语言模型推理技术
Star-Attention是NVIDIA提出的一种新型块稀疏注意力机制,旨在提高基于Transformer的大型语言模型(LLM)在长序列上的推理效率。该技术通过两个阶段的操作显著提高了推理速度,同时保持了95-100%的准确率。它与大多数基于Transformer的LLM兼容,无需额外训练或微调即可直接使用,并且可以与其他优化方法如Flash Attention和KV缓存压缩技术结合使用,进一步提升性能。
专为开发者设计的AI搜索引擎,提升搜索效率。
代悟是一个专为开发者设计的AI搜索引擎,它通过智能化的搜索技术,帮助开发者快速找到所需的技术信息和解决方案。产品背景信息显示,代悟由上海深宇识智能科技有限公司开发,目前处于Beta版本试用中。该产品的主要优点包括提高搜索效率、精准匹配技术问题和解决方案,以及可能的个性化搜索体验。产品定位于服务开发者群体,通过AI技术提升开发工作的效率和质量。
AI助手,助力赢得公关活动
Dazzle是一个AI驱动的公关平台,旨在通过人工智能技术帮助公关专业人士发现记者、媒体和播客机会,以及获取出版物档案和记者详细信息。它通过实时数据提供最有可能分享故事的记者、出版物和播客,同时提供所有必要的情报,包括联系方式、记者领域、出版物信息和文章摘要。Dazzle由屡获殊荣的公关资深人士和AI技术专家共同打造,专为公关工作流程设计,帮助用户提高工作效率,减少研究时间,专注于建立媒体关系和获得报道。Dazzle提供灵活的月度定价,适合不同需求的客户。
AI驱动的视频搜索平台,免费学习任何知识。
NotClass是一个利用人工智能技术提供视频搜索服务的平台,用户可以在该平台上搜索YouTube和播客中的内容,快速找到所需的学习资源。该产品的主要优点包括快速搜索、内容丰富、易于使用,并且完全免费。NotClass的背景信息显示,它旨在为用户提供一个便捷的学习工具,通过AI技术提升学习效率。产品定位于教育领域,特别是对于那些寻求在线学习资源的用户。
自动化AI网络研究助手,利用本地大型语言模型进行深入研究。
Automated-AI-Web-Researcher-Ollama是一个创新的研究助理工具,它通过Ollama运行的本地大型语言模型来对任何给定的主题或问题进行深入的自动化在线研究。与传统的大型语言模型互动不同,这个工具通过将查询分解为专注的研究领域,系统地通过网络搜索和相关网站的抓取来调查,并将发现自动保存到一个包含所有内容和每个来源链接的文本文件中。此外,用户可以随时输入命令停止研究,然后大型语言模型会审查所有找到的内容并提供对原始主题或问题的全面总结。用户还可以询问大型语言模型关于其研究发现的问题。这个工具的主要优点是它不仅仅是一个聊天机器人,而是一个自动化的研究助理,系统地调查主题并维护有记录的研究轨迹。
© 2024 AIbase 备案号:闽ICP备08105208号-14