需求人群:
"目标受众为需要进行复杂问题解决和决策的企业和研究人员。Deepthought-8B以其透明和可定制的推理过程,特别适合需要理解和验证AI决策的场合,如金融风险评估、医疗诊断支持和科学研究。"
使用场景示例:
在金融领域,Deepthought-8B可以用于风险评估,通过透明推理帮助分析师理解模型决策。
在医疗领域,模型可以辅助医生进行诊断,提供结构化的推理过程,增加诊断的可信度。
在科研中,Deepthought-8B可以用于数据分析和模式识别,其结构化输出便于研究者复现和验证结果。
产品特色:
透明推理:逐步记录思考过程
可编程方法:无需重新训练即可定制推理模式
测试时计算扩展:根据任务复杂性灵活调整推理深度
高效扩展:可在16GB+ VRAM上运行
结构化输出:JSON格式的推理链,便于集成
使用教程:
1. 安装必要的Python库:torch和transformers。
2. (可选)安装Flash Attention 2以提高性能。
3. 设置HuggingFace token作为环境变量。
4. 在Python代码中使用模型:初始化tokenizer和model。
5. 运行提供的示例脚本:执行deepthought_inference.py。
6. 查看模型提供的JSON格式的推理结果。
浏览量:4
最新流量情况
月访问量
20899.84k
平均访问时长
00:04:57
每次访问页数
5.24
跳出率
46.04%
流量来源
直接访问
48.28%
自然搜索
36.58%
邮件
0.03%
外链引荐
12.01%
社交媒体
3.07%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.07%
印度
7.93%
日本
3.42%
俄罗斯
5.95%
美国
18.10%
基于LLaMA-3.1 8B的小型推理模型,实现透明可控的AI推理。
Deepthought-8B是一个小型但功能强大的推理模型,它基于LLaMA-3.1 8B构建,旨在使AI推理更加透明和可控。尽管模型相对较小,但它实现了与更大模型相媲美的复杂推理能力。该模型以其独特的问题解决方法而设计,将其思考过程分解为清晰、独特、有记录的步骤,并将推理过程以结构化的JSON格式输出,便于理解和验证其决策过程。
Qwen团队开发的实验性研究模型,专注于提升AI推理能力。
QwQ-32B-Preview是一个由Qwen团队开发的实验性研究模型,旨在提高人工智能的推理能力。该模型展示了有前景的分析能力,但也存在一些重要的限制。模型在数学和编程方面表现出色,但在常识推理和细微语言理解方面还有提升空间。该模型使用了transformers架构,具有32.5B个参数,64层,以及40个注意力头(GQA)。产品背景信息显示,QwQ-32B-Preview是基于Qwen2.5-32B模型的进一步开发,具有更深层次的语言理解和生成能力。
先进的AI模型,专注于复杂问题的推理和解决
Skywork-o1-Open-Llama-3.1-8B是由昆仑科技Skywork团队开发的一系列模型,这些模型结合了o1风格的慢思考和推理能力。该系列模型不仅在输出中展现出天生的思考、规划和反思能力,而且在标准基准测试中的推理技能有显著提升。这一系列代表了AI能力的战略进步,将原本较弱的基础模型推向了推理任务的最新技术(SOTA)。
Hermes系列的最新版大型语言模型
Hermes 3是Nous Research公司推出的Hermes系列最新版大型语言模型(LLM),相较于Hermes 2,它在代理能力、角色扮演、推理、多轮对话、长文本连贯性等方面都有显著提升。Hermes系列模型的核心理念是将LLM与用户对齐,赋予终端用户强大的引导能力和控制权。Hermes 3在Hermes 2的基础上,进一步增强了功能调用和结构化输出能力,提升了通用助手能力和代码生成技能。
轻量级、多语言的AI模型,支持长文本生成和推理。
Phi-3.5-MoE-instruct是由微软开发的轻量级、多语言的AI模型,基于高质量、推理密集型数据构建,支持128K的上下文长度。该模型经过严格的增强过程,包括监督式微调、近端策略优化和直接偏好优化,以确保精确的指令遵循和强大的安全措施。它旨在加速语言和多模态模型的研究,作为生成性AI功能的构建模块。
轻量级、多语言的先进文本生成模型
Phi-3.5-mini-instruct 是微软基于高质量数据构建的轻量级、多语言的先进文本生成模型。它专注于提供高质量的推理密集型数据,支持128K的token上下文长度,经过严格的增强过程,包括监督式微调、近端策略优化和直接偏好优化,确保精确的指令遵循和强大的安全措施。
专注于数学和科学任务的模型
Mathstral 7B 是一个专注于数学和科学任务的模型,基于 Mistral 7B。该模型在数学和科学领域的文本生成和推理方面表现出色,适用于需要高度精确和复杂计算的应用场景。模型的开发团队包括多位专家,确保了其在行业内的领先地位和可靠性。
基于Google Gemini AI的英语发音纠正工具
Gemini 英语口语助手是一个基于Google Gemini AI的英语口语练习助手,能够实时识别用户的英语发音,并提供即时反馈和纠正建议。它具备实时语音识别、AI驱动的发音评估、语法纠正、情景对话练习等功能,旨在帮助用户提高英语口语能力。该产品由个人开发者Box开发,以其免费、实用的特性,特别适合英语学习者和教师使用。
7B参数的多语言文本生成模型
CohereForAI/c4ai-command-r7b-12-2024是一个7B参数的多语言模型,专注于推理、总结、问答和代码生成等高级任务。该模型支持检索增强生成(RAG)和工具使用,能够使用和组合多个工具来完成更复杂的任务。它在企业相关的代码用例上表现优异,支持23种语言。
与AI圣诞老人对话,体验节日乐趣。
Talk to Santa是一个由Tavus开发的AI圣诞老人网站,用户可以通过这个平台与AI圣诞老人进行互动对话,感受节日氛围。该产品利用人工智能技术,模拟圣诞老人的对话风格,为用户提供一个有趣且富有创意的交流体验。它不仅增加了节日的趣味性,还展示了人工智能在娱乐领域的应用潜力。目前产品提供免费试用,适合所有年龄段的用户,尤其是儿童和家庭用户。
大型语言模型,用于文本生成和分类
OLMo-2-1124-7B-RM是由Hugging Face和Allen AI共同开发的一个大型语言模型,专注于文本生成和分类任务。该模型基于7B参数的规模构建,旨在处理多样化的语言任务,包括聊天、数学问题解答、文本分类等。它是基于Tülu 3数据集和偏好数据集训练的奖励模型,用于初始化RLVR训练中的价值模型。OLMo系列模型的发布,旨在推动语言模型的科学研究,通过开放代码、检查点、日志和相关的训练细节,促进了模型的透明度和可访问性。
Google新一代AI模型,开启智能助理新时代。
Gemini 2.0是Google DeepMind推出的最新AI模型,旨在为“智能助理时代”提供支持。该模型在多模态能力上进行了升级,包括原生图像和音频输出以及工具使用能力,使得构建新的AI智能助理更加接近通用助理的愿景。Gemini 2.0的发布,标志着Google在AI领域的深入探索和持续创新,通过提供更强大的信息处理和输出能力,使得信息更加有用,为用户带来更高效和便捷的体验。
大规模多模态推理与指令调优平台
MAmmoTH-VL是一个大规模多模态推理平台,它通过指令调优技术,显著提升了多模态大型语言模型(MLLMs)在多模态任务中的表现。该平台使用开放模型创建了一个包含1200万指令-响应对的数据集,覆盖了多样化的、推理密集型的任务,并提供了详细且忠实的理由。MAmmoTH-VL在MathVerse、MMMU-Pro和MuirBench等基准测试中取得了最先进的性能,展现了其在教育和研究领域的重要性。
Qwen2-VL-7B是最新的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-7B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。此外,Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
最先进的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-2B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
70亿参数的多语言大型语言模型
Llama-3.3-70B-Instruct是由Meta开发的一个70亿参数的大型语言模型,专门针对多语言对话场景进行了优化。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来提高其有用性和安全性。它支持多种语言,并能够处理文本生成任务,是自然语言处理领域的一项重要技术。
高性能英文文本生成模型
OLMo-2-1124-7B-SFT是由艾伦人工智能研究所(AI2)发布的一个英文文本生成模型,它是OLMo 2 7B模型的监督微调版本,专门针对Tülu 3数据集进行了优化。Tülu 3数据集旨在提供多样化任务的顶尖性能,包括聊天、数学问题解答、GSM8K、IFEval等。该模型的主要优点包括强大的文本生成能力、多样性任务处理能力以及开源的代码和训练细节,使其成为研究和教育领域的有力工具。
先进的文本生成模型
OLMo-2-1124-13B-SFT是由Allen AI研究所开发的一个大型语言模型,经过在特定数据集上的监督微调,旨在提高在多种任务上的表现,包括聊天、数学问题解答、文本生成等。该模型基于Transformers库和PyTorch框架,支持英文,拥有Apache 2.0的开源许可证,适用于研究和教育用途。
10亿参数的英文文本和代码语言模型
INTELLECT-1-Instruct是一个由Prime Intellect训练的10亿参数语言模型,从零开始在1万亿个英文文本和代码token上进行训练。该模型支持文本生成,并且具有分布式训练的能力,能够在不可靠的、全球分布的工作者上进行高性能训练。它使用了DiLoCo算法进行训练,并利用自定义的int8 all-reduce内核来减少通信负载,显著降低了通信开销。这个模型的背景信息显示,它是由30个独立的社区贡献者提供计算支持,并在3个大洲的14个并发节点上进行训练。
先进的文本生成模型,支持多样化任务处理。
OLMo-2-1124-7B-DPO是由Allen人工智能研究所开发的一个大型语言模型,经过特定的数据集进行监督式微调,并进一步进行了DPO训练。该模型旨在提供在多种任务上,包括聊天、数学问题解答、文本生成等的高性能表现。它是基于Transformers库构建的,支持PyTorch,并以Apache 2.0许可发布。
高性能英文语言模型,适用于多样化任务
OLMo-2-1124-13B-DPO是经过监督微调和DPO训练的13B参数大型语言模型,主要针对英文,旨在提供在聊天、数学、GSM8K和IFEval等多种任务上的卓越性能。该模型是OLMo系列的一部分,旨在推动语言模型的科学研究。模型训练基于Dolma数据集,并公开代码、检查点、日志和训练细节。
高质量数据集,用于OLMo2训练的第二阶段。
DOLMino dataset mix for OLMo2 stage 2 annealing training是一个混合了多种高质数据的数据集,用于在OLMo2模型训练的第二阶段。这个数据集包含了网页页面、STEM论文、百科全书等多种类型的数据,旨在提升模型在文本生成任务中的表现。它的重要性在于为开发更智能、更准确的自然语言处理模型提供了丰富的训练资源。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
一款经过优化的大型语言模型,擅长文本生成和对话。
OLMo-2-1124-13B-Instruct是由Allen AI研究所开发的一款大型语言模型,专注于文本生成和对话任务。该模型在多个任务上表现出色,包括数学问题解答、科学问题解答等。它是基于13B参数的版本,经过在特定数据集上的监督微调和强化学习训练,以提高其性能和安全性。作为一个开源模型,它允许研究人员和开发者探索和改进语言模型的科学。
先进的文本生成模型,支持多样化任务
Llama-3.1-Tulu-3-8B-SFT是Tülu3模型家族中的一员,这是一个领先的指令遵循模型家族,提供完全开源的数据、代码和配方,旨在为现代后训练技术提供全面的指南。该模型不仅在聊天任务上表现出色,还在MATH、GSM8K和IFEval等多样化任务上展现了卓越的性能。
领先的指令遵循模型家族,提供开源数据、代码和指南。
Llama-3.1-Tulu-3-70B-SFT是Tülu3模型家族的一部分,专为现代后训练技术提供全面指南而设计。该模型不仅在聊天任务上表现出色,还在MATH、GSM8K和IFEval等多种任务上实现了最先进的性能。它是基于公开可用的、合成的和人类创建的数据集训练的,主要使用英语,并遵循Llama 3.1社区许可协议。
您的AI助手,提升生产力。
TwinMind是一个个人AI侧边栏,可以理解会议和网站内容,为您提供实时答案,并根据上下文为您撰写任何内容。它允许您访问最新的AI模型,提出关于浏览器标签页、PDF、YouTube视频等的任何问题,提供会议和面试中的下一步建议,以及在侧边栏上搜索网络并即时获得答案。TwinMind注重隐私保护,不在任何地方存储您的音频,而是直接在设备上处理音频数据,确保音频不会被回放或稍后访问。
先进的文本生成模型,支持多样化任务
Llama-3.1-Tulu-3-8B-DPO是Tülu3模型家族中的一员,专注于指令遵循,提供完全开源的数据、代码和配方,旨在作为现代后训练技术的全面指南。该模型专为聊天以外的多样化任务设计,如MATH、GSM8K和IFEval,以达到最先进的性能。模型主要优点包括开源数据和代码、支持多种任务、以及优秀的性能。产品背景信息显示,该模型由Allen AI研究所开发,遵循Llama 3.1社区许可协议,适用于研究和教育用途。
© 2024 AIbase 备案号:闽ICP备08105208号-14