需求人群:
"目标受众包括设计师、插画师、3D建模师和建筑渲染师等创意专业人士。这些模型因其高精度和易用性,能够帮助这些专业人士在各自的领域内创造出更加精细和专业的作品。"
使用场景示例:
设计师使用Blur模型将草图放大为高分辨率的室内设计图。
插画师利用Canny模型根据边缘图生成具有特定风格的插画。
3D建模师使用Depth模型为游戏或电影创建逼真的3D纹理。
产品特色:
- Blur:实现极高保真度的图像放大,包括8K和16K分辨率,适合将低分辨率图像拼接成大型详细视觉作品。
- Canny:利用Canny边缘图结构化生成的图像,特别适合插画,并且可以适应所有风格。
- Depth:使用DepthFM生成的深度图指导图像生成,非常适合建筑渲染和纹理3D资产,以及其他需要精确控制图像组成的用例。
使用教程:
1. 访问Hugging Face网站下载模型权重。
2. 访问GitHub获取模型的代码。
3. 根据GitHub上的指南安装和配置所需的环境。
4. 使用Comfy UI或其他支持的工具来操作模型。
5. 根据需要选择合适的ControlNet模型(Blur、Canny或Depth)。
6. 将输入数据(如边缘图或深度图)导入模型以生成图像。
7. 调整模型参数以获得最佳结果。
8. 保存并使用生成的图像进行进一步的工作或展示。
浏览量:29
最新流量情况
月访问量
1272.31k
平均访问时长
00:01:37
每次访问页数
2.86
跳出率
46.34%
流量来源
直接访问
33.13%
自然搜索
56.03%
邮件
0.05%
外链引荐
8.47%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
6.52%
印度
5.84%
日本
7.59%
俄罗斯
5.61%
美国
16.76%
Stable Diffusion 3.5 Large的三款ControlNets模型
ControlNets for Stable Diffusion 3.5 Large是Stability AI推出的三款图像控制模型,包括Blur、Canny和Depth。这些模型能够提供精确和便捷的图像生成控制,适用于从室内设计到角色创建等多种应用场景。它们在用户偏好的ELO比较研究中排名第一,显示出其在同类模型中的优越性。这些模型在Stability AI社区许可下免费提供给商业和非商业用途,对于年收入不超过100万美元的组织和个人,使用完全免费,并且产出的媒体所有权归用户所有。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
强大的图像生成模型
Stable Diffusion 3.5是Stability AI推出的一款图像生成模型,具有多种变体,包括Stable Diffusion 3.5 Large和Stable Diffusion 3.5 Large Turbo。这些模型可高度定制,能在消费级硬件上运行,并且根据Stability AI社区许可协议,可以免费用于商业和非商业用途。该模型的发布体现了Stability AI致力于让视觉媒体变革的工具更易于获取、更前沿、更自由的使命。
图像生成领域的革新工具。
Amazon Titan Image Generator v2是AWS推出的一款AI图像生成模型,它通过使用参考图像、编辑现有视觉效果、去除背景、生成图像变体以及安全定制模型来保持品牌风格和主题一致性,从而简化工作流程、提高生产力,并将创意愿景变为现实。
AI驱动的动物图像生成器,快速创建高质量动物图像。
Random Animal Generator是一个利用先进人工智能技术的网站,用户可以在短时间内生成高质量、独特的动物图像。这项技术的重要性在于它能够快速满足用户对动物图像的需求,无论是用于娱乐、教育还是设计灵感。产品背景信息显示,该网站由专业的机器学习算法支持,能够提供即时的结果和多样化的动物种类及风格选择。价格方面,网站提供了不同层次的服务选项,以满足不同用户的需求。
FLUX.1的最小且通用的控制器
OminiControl是一个为Diffusion Transformer模型如FLUX设计的最小但功能强大的通用控制框架。它支持主题驱动控制和空间控制(如边缘引导和图像修复生成)。OminiControl的设计非常精简,仅引入了基础模型0.1%的额外参数,同时保持了原始模型结构。这个项目由新加坡国立大学的学习与视觉实验室开发,代表了人工智能领域中图像生成和控制技术的最新进展。
利用AI生成印度风格的图像
BharatDiffusion是一个基于AI的图像生成模型,专门针对印度的多样化景观、文化和遗产进行微调,能够生成反映印度丰富文化和特色的高质量图像。该模型使用Stable Diffusion技术处理所有图像生成,确保内容与印度的多样性和活力相呼应。
AI云平台,为所有人服务
Kalavai是一个AI云平台,旨在为所有人提供服务。它通过集成各种AI技术,使得用户能够构建、部署和运行AI应用。Kalavai平台的主要优点是其易用性和灵活性,用户无需深入了解复杂的AI技术,即可快速构建自己的AI应用。平台背景信息显示,它支持多种语言和框架,适合不同层次的开发者使用。目前,Kalavai提供免费试用,具体价格和定位需要进一步了解。
基于文本生成服装图像的AI模型
FLUX.1-dev LoRA Outfit Generator是一个文本到图像的AI模型,能够根据用户详细描述的颜色、图案、合身度、风格、材质和类型来生成服装。该模型使用了H&M Fashion Captions Dataset数据集进行训练,并基于Ostris的AI Toolkit进行开发。它的重要性在于能够辅助设计师快速实现设计想法,加速服装行业的创新和生产流程。
基于人工智能的图像生成模型
Stable Diffusion 3.5 Medium 是由 Stability AI 提供的一款基于人工智能的图像生成模型,它能够根据文本描述生成高质量的图像。这项技术的重要性在于它能够极大地推动创意产业的发展,如游戏设计、广告、艺术创作等领域。Stable Diffusion 3.5 Medium 以其高效的图像生成能力、易用性和较低的资源消耗而受到用户的青睐。目前,该模型在 Hugging Face 平台上以免费试用的形式提供给用户。
开源的去蒸馏FLUX模型
LibreFLUX是一个基于Apache 2.0许可的开源版本,提供了完整的T5上下文长度,使用注意力掩码,恢复了分类器自由引导,并去除了大部分FLUX美学微调/DPO。这意味着它比基础FLUX更不美观,但有潜力更容易地微调到任何新的分布。LibreFLUX的开发秉承开源软件的核心原则,即使用困难,比专有解决方案更慢、更笨拙,并且审美停留在21世纪初。
基于AI的动画图片生成平台
AnimeGen是一个利用先进AI模型将文本提示转化为动漫风格图片的在线工具。它通过复杂的算法和机器学习技术,为用户提供了一种简单快捷的方式来生成高质量的动漫图片,非常适合艺术家、内容创作者和动漫爱好者探索新的创作可能性。AnimeGen支持80多种语言,生成的图片公开显示并可被搜索引擎抓取,是一个多功能的创意工具。
AI领域的专业课程和资源平台
DeepLearning.AI 是由著名人工智能专家Andrew Ng创立的在线教育平台,专注于提供机器学习和深度学习领域的高质量课程和专业证书。该平台为初学者和专业人士提供了一个学习AI技能和应用它们的实践机会。通过与行业领导者的合作,DeepLearning.AI 确保了课程内容的前沿性和实用性,帮助学习者在AI领域建立坚实的基础,并推动他们的职业发展。
谷歌旗下领先的人工智能研究公司
Google DeepMind 是谷歌旗下的一家领先的人工智能公司,专注于开发先进的机器学习算法和系统。DeepMind 以其在深度学习和强化学习领域的开创性工作而闻名,其研究涵盖了从游戏到医疗保健等多个领域。DeepMind 的目标是通过构建智能系统来解决复杂的问题,推动科学和医学的进步。
AI脚本集合,主要用于Stable Diffusion模型。
ai-toolkit是一个研究性质的GitHub仓库,由Ostris创建,主要用于Stable Diffusion模型的实验和训练。它包含了各种AI脚本,支持模型训练、图像生成、LoRA提取器等。该工具包仍在开发中,可能存在不稳定性,但提供了丰富的功能和高度的自定义性。
NVIDIA AI Foundry 提供定制化的 AI 模型和解决方案。
NVIDIA AI Foundry 是一个平台,旨在帮助企业构建、优化和部署 AI 模型。它提供了一个集成的环境,使企业能够利用 NVIDIA 的先进技术来加速 AI 创新。NVIDIA AI Foundry 的主要优点包括其强大的计算能力、广泛的 AI 模型库以及对企业级应用的支持。通过这个平台,企业可以更快速地开发出适应其特定需求的 AI 解决方案,从而提高效率和竞争力。
AI加速器,推动人工智能的突破
Graphcore是一家专注于人工智能硬件加速器的公司,其产品主要面向需要高性能计算的人工智能领域。Graphcore的IPU(智能处理单元)技术为机器学习、深度学习等AI应用提供了强大的计算支持。公司的产品包括云端IPU、数据中心IPU以及Bow IPU处理器等,这些产品通过Poplar® Software进行优化,能够显著提升AI模型的训练和推理速度。Graphcore的产品和技术在金融、生物技术、科研等多个行业都有应用,帮助企业和研究机构加速AI项目的实验过程,提高效率。
AI 驱动的创意工具集,激发无限想象。
Glif AI 应用是一个集成了多种 AI 创意工具的平台,用户可以在这里找到和构建各种 AI 驱动的图像生成器、漫画生成器、角色生成器等。这些工具利用最新的 AI 技术,如神经网络,为用户提供了一种全新的创作方式,使得即使是没有专业设计背景的用户也能轻松创作出高质量的图像和艺术作品。
将大型语言模型的编码能力转换为图像生成能力。
Omost是一个旨在将大型语言模型(LLM)的编码能力转化为图像生成(更准确地说是图像组合)能力的项目。它提供了基于Llama3和Phi3变体的预训练LLM模型,这些模型能够编写代码以使用Omost的虚拟Canvas代理来组合图像视觉内容。Canvas可以由特定的图像生成器实现来实际生成图像。Omost项目背后的技术包括Direct Preference Optimization (DPO)和OpenAI GPT4o的多模态能力。
高效能的文本到图像生成模型
SDXL Flash是由SD社区与Project Fluently合作推出的文本到图像生成模型。它在保持生成图像质量的同时,提供了比LCM、Turbo、Lightning和Hyper更快的处理速度。该模型基于Stable Diffusion XL技术,通过优化步骤和CFG(Guidance)参数,实现了图像生成的高效率和高质量。
谷歌下一代Gemma模型,提供突破性的性能和效率。
Gemma 2是下一代谷歌Gemma模型,拥有27亿参数,提供与Llama 3 70B相当的性能,但模型大小仅为其一半。它在NVIDIA的GPU上运行优化,或在Vertex AI上的单个TPU主机上高效运行,降低了部署成本,使更广泛的用户能够访问和使用。Gemma 2还提供了强大的调优工具链,支持云解决方案和社区工具,如Google Cloud和Axolotl,以及与Hugging Face和NVIDIA TensorRT-LLM的无缝合作伙伴集成。
AI图像、视频和广告生成器
Darwin Studio是一款AI图像、视频和广告生成器,通过使用AI技术和算法,帮助用户快速生成高质量的图像、视频和广告。它具有高效、智能、创新的特点,可以大大提升创意工作效率。
深度学习算法与大模型面试指南,持续更新的面试题目集合。
DeepLearing-Interview-Awesome-2024 是一个开源的面试题目集合项目,专注于深度学习算法和大模型领域的面试准备。该项目由社区成员共同维护,旨在提供最新的面试题目和答案解析,帮助求职者和研究人员深入理解深度学习领域的前沿技术和应用。它包含了丰富的面试题目,覆盖了大语言模型、视觉模型、通用问题等多个方面,是准备深度学习相关职位的宝贵资源。
一种优化扩散模型采样时间表的方法,以提高生成模型的输出质量。
Align Your Steps 是一种用于优化扩散模型(Diffusion Models, DMs)采样时间表的方法。这种方法利用随机微积分的方法,为不同的求解器、训练有素的DMs和数据集找到特定的最优采样时间表。它通过最小化KLUB项来优化时间离散化,即采样调度,从而在相同的计算预算下提高输出质量。该方法在图像、视频以及2D玩具数据合成基准测试中表现出色,优化的采样时间表在几乎所有实验中都优于之前手工制定的时间表。
Adobe Firefly Image 3 Model,带来照片般逼真的图像生成技术,提升创意表达。
Adobe Firefly Image 3 Model 是 Adobe 公司推出的最新图像生成模型,它在照片般逼真的质量、风格化能力、细节和准确性以及多样性上都有显著提升。该模型自2023年3月首次发布以来,已经在全球生成超过70亿张图片,并且已经集成到 Adobe Photoshop、Adobe Express、Adobe Illustrator 和 Adobe Substance 3D 等日常使用的 Adobe 工作流程中。Adobe 致力于负责任地开发生成式人工智能,并与全球联盟 Content Authenticity Initiative (CAI) 合作,以促进数字内容的透明度。
AI学习平台
Generative AI Courses是一家提供AI学习课程的在线平台。通过课程学习,用户可以掌握GenAI、AI、机器学习、深度学习、chatGPT、DALLE、图像生成、视频生成、文本生成等技术,并了解2024年AI领域的最新发展。
实时一步潜在扩散模型,可用图像条件控制生成
SDXS是一种新的扩散模型,通过模型微型化和减少采样步骤,大幅降低了模型延迟。它利用知识蒸馏来简化U-Net和图像解码器架构,并引入了一种创新的单步DM训练技术,使用特征匹配和分数蒸馆。SDXS-512和SDXS-1024模型可在单个GPU上分别实现约100 FPS和30 FPS的推理速度,比之前模型快30至60倍。此外,该训练方法在图像条件控制方面也有潜在应用,可实现高效的图像到图像翻译。
连接不同语言模型和生成视觉模型进行文本到图像生成
LaVi-Bridge是一种针对文本到图像扩散模型设计的桥接模型,能够连接各种预训练的语言模型和生成视觉模型。它通过利用LoRA和适配器,提供了一种灵活的插拔式方法,无需修改原始语言和视觉模型的权重。该模型与各种语言模型和生成视觉模型兼容,可容纳不同的结构。在这一框架内,我们证明了通过整合更高级的模块(如更先进的语言模型或生成视觉模型)可以明显提高文本对齐或图像质量等能力。该模型经过大量评估,证实了其有效性。
© 2024 AIbase 备案号:闽ICP备08105208号-14