需求人群:
"Clapper.app适合电影制作人、视频编辑者和内容创作者,尤其是那些希望利用AI技术提高创作效率和质量的专业人士。"
使用场景示例:
电影制作团队使用Clapper.app快速生成剧本的故事板和初步视频草图。
独立视频创作者利用Clapper.app的AI功能,自动生成视频内容,节省制作时间。
教育机构采用Clapper.app作为教学工具,教授学生如何使用AI进行视频创作。
产品特色:
将剧本转化为故事板
自动生成视频内容
提供声音和音乐渲染
支持与Adobe Premiere Pro等专业软件的集成(开发中)
使用Electron进行桌面客户端开发
通过GitHub进行社区协作和版本控制
持续迭代更新,增加新功能和改进
使用教程:
1. 访问Clapper.app的GitHub页面并克隆或下载项目。
2. 确保本地已安装git lfs和Node.js环境,使用NVM管理Node版本。
3. 根据项目文档安装依赖并配置环境变量。
4. 通过Electron启动Clapper.app进行初步体验。
5. 参与社区开发,为项目贡献代码或提供反馈。
6. 利用Clapper.app的AI功能,将剧本内容转化为视频和音频。
7. 根据需要调整和完善生成的视频内容,进行后期编辑。
浏览量:116
最新流量情况
月访问量
5.03m
平均访问时长
00:06:29
每次访问页数
5.88
跳出率
37.10%
流量来源
直接访问
52.07%
自然搜索
32.84%
邮件
0.04%
外链引荐
12.88%
社交媒体
2.04%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.85%
德国
3.90%
印度
9.41%
俄罗斯
4.16%
美国
18.95%
AI时代的视频编辑工具
Clapper.app是一个开源的AI故事可视化工具,能够将剧本解读并渲染成故事板、视频、声音和音乐。目前,该工具仍处于早期开发阶段,并不适用于普通用户,因为一些功能尚未完成,也没有教程等。
Huginn-0125是一个35亿参数的潜变量循环深度模型,擅长推理和代码生成。
Huginn-0125是一个由马里兰大学帕克分校Tom Goldstein实验室开发的潜变量循环深度模型。该模型拥有35亿参数,经过8000亿个token的训练,在推理和代码生成方面表现出色。其核心特点是通过循环深度结构在测试时动态调整计算量,能够根据任务需求灵活增加或减少计算步骤,从而在保持性能的同时优化资源利用。该模型基于开源的Hugging Face平台发布,支持社区共享和协作,用户可以自由下载、使用和进一步开发。其开源性和灵活的架构使其成为研究和开发中的重要工具,尤其是在资源受限或需要高性能推理的场景中。
Gen AI Toolbox for Databases 是一个开源服务器,用于简化与数据库交互的 Gen AI 工具的开发。
Gen AI Toolbox for Databases 是一个开源工具,旨在帮助开发者更轻松、快速且安全地构建与数据库交互的生成式 AI 工具。它通过处理连接池、身份验证等复杂性,简化了工具的开发和部署过程。该工具支持多种数据库,包括 AlloyDB、Cloud SQL、MySQL、PostgreSQL 等,并提供端到端的可观测性支持,如 OpenTelemetry 集成。它适用于需要高效开发和安全访问数据库的应用场景,目前是免费开源的。
On-device Sora 是一个基于扩散模型的移动设备端文本到视频生成项目。
On-device Sora 是一个开源项目,旨在通过线性比例跳跃(LPL)、时间维度标记合并(TDTM)和动态加载并发推理(CI-DL)等技术,实现在移动设备(如 iPhone 15 Pro)上高效的视频生成。该项目基于 Open-Sora 模型开发,能够根据文本输入生成高质量视频。其主要优点包括高效性、低功耗和对移动设备的优化。该技术适用于需要在移动设备上快速生成视频内容的场景,如短视频创作、广告制作等。项目目前开源,用户可以免费使用。
开源工业级自动语音识别模型,支持普通话、方言和英语,性能卓越。
FireRedASR-AED-L 是一个开源的工业级自动语音识别模型,专为满足高效率和高性能的语音识别需求而设计。该模型采用基于注意力的编码器-解码器架构,支持普通话、中文方言和英语等多种语言。它在公共普通话语音识别基准测试中达到了新的最高水平,并且在歌唱歌词识别方面表现出色。该模型的主要优点包括高性能、低延迟和广泛的适用性,适用于各种语音交互场景。其开源特性使得开发者可以自由地使用和修改代码,进一步推动语音识别技术的发展。
开源的工业级普通话自动语音识别模型,支持多种应用场景。
FireRedASR 是一个开源的工业级普通话自动语音识别模型,采用 Encoder-Decoder 和 LLM 集成架构。它包含两个变体:FireRedASR-LLM 和 FireRedASR-AED,分别针对高性能和高效能需求设计。该模型在普通话基准测试中表现出色,同时在方言和英文语音识别上也有良好表现。它适用于需要高效语音转文字的工业级应用,如智能助手、视频字幕生成等。模型开源,便于开发者集成和优化。
基于 PyTorch 的音乐、歌曲和音频生成工具包,支持高质量音频生成
InspireMusic 是一个专注于音乐、歌曲和音频生成的 AIGC 工具包和模型框架,采用 PyTorch 开发。它通过音频标记化和解码过程,结合自回归 Transformer 和条件流匹配模型,实现高质量音乐生成。该工具包支持文本提示、音乐风格、结构等多种条件控制,能够生成 24kHz 和 48kHz 的高质量音频,并支持长音频生成。此外,它还提供了方便的微调和推理脚本,方便用户根据需求调整模型。InspireMusic 的开源旨在赋能普通用户通过音乐创作提升研究中的音效表现。
本地运行的AI模型训练与部署工具,支持个性化训练和多平台使用。
Kolosal AI 是一款用于本地设备训练和运行大型语言模型(LLMs)的工具。它通过简化模型训练、优化和部署流程,使用户能够在本地设备上高效地使用 AI 技术。该工具支持多种硬件平台,提供快速的推理速度和灵活的定制能力,适合从个人开发者到大型企业的广泛应用场景。其开源特性也使得用户可以根据自身需求进行二次开发。
RAG-FiT是一个用于提升LLMs利用外部信息能力的库,通过特别创建的RAG增强数据集对模型进行微调。
RAG-FiT是一个强大的工具,旨在通过检索增强生成(RAG)技术提升大型语言模型(LLMs)的能力。它通过创建专门的RAG增强数据集,帮助模型更好地利用外部信息。该库支持从数据准备到模型训练、推理和评估的全流程操作。其主要优点包括模块化设计、可定制化工作流以及对多种RAG配置的支持。RAG-FiT基于开源许可,适合研究人员和开发者进行快速原型开发和实验。
s1是一个基于Qwen2.5-32B-Instruct微调的推理模型,仅用1000个样本进行训练。
s1是一个推理模型,专注于通过少量样本实现高效的文本生成能力。它通过预算强制技术在测试时进行扩展,能够匹配o1-preview的性能。该模型由Niklas Muennighoff等人开发,相关研究发表在arXiv上。模型使用Safetensors技术,具有328亿参数,支持文本生成任务。其主要优点是能够通过少量样本实现高质量的推理,适合需要高效文本生成的场景。
EasyWeb是一个用于构建和部署与浏览器交互的AI代理的开放平台。
EasyWeb是一个基于AI的开放平台,专注于构建和部署能够与浏览器交互的智能代理。它通过提供一个简单易用的界面,让用户能够快速部署AI代理来完成各种浏览器相关任务,如旅行规划、在线购物和新闻收集等。该平台基于OpenHands架构,支持并行处理多个用户请求,并允许用户根据需要切换不同的代理和LLM(大型语言模型)。其主要优点包括部署简单、使用方便、支持多种任务类型,并且完全开源,适合开发者和研究人员进行二次开发和研究。EasyWeb的出现为AI在自动化任务中的应用提供了新的可能性,同时也为相关领域的研究和开发提供了有力的支持。
本地运行的人工智能代理,无缝自动化工程任务。
Codename Goose 是一款本地运行的人工智能代理工具,旨在帮助开发者高效完成工程任务。它强调开源和本地运行,确保用户对任务执行有完全控制权。通过连接外部服务器或API,Goose 可以根据用户需求进行扩展,实现复杂任务的自动化处理,从而让开发者专注于更重要的工作。Goose 的开源特性鼓励开发者参与贡献和创新,其本地运行的模式保障了数据隐私和任务执行效率。
开源的深度研究工具,旨在通过开源框架复现类似Deep Research的功能
Open-source DeepResearch 是一个开源项目,旨在通过开源的框架和工具复现类似 OpenAI Deep Research 的功能。该项目基于 Hugging Face 平台,利用开源的大型语言模型(LLM)和代理框架,通过代码代理和工具调用实现复杂的多步推理和信息检索。其主要优点是开源、可定制性强,并且能够利用社区的力量不断改进。该项目的目标是让每个人都能在本地运行类似 DeepResearch 的智能代理,使用自己喜爱的模型,并且完全本地化和定制化。
结合DeepSeek R1推理能力和Claude创造力及代码生成能力的统一API和聊天界面。
DeepClaude是一个强大的AI工具,旨在将DeepSeek R1的推理能力与Claude的创造力和代码生成能力相结合,通过统一的API和聊天界面提供服务。它利用高性能的流式API(用Rust编写)实现即时响应,同时支持端到端加密和本地API密钥管理,确保用户数据的隐私和安全。该产品是完全开源的,用户可以自由贡献、修改和部署。其主要优点包括零延迟响应、高度可配置性以及支持用户自带密钥(BYOK),为开发者提供了极大的灵活性和控制权。DeepClaude主要面向需要高效代码生成和AI推理能力的开发者和企业,目前处于免费试用阶段,未来可能会根据使用量收费。
一个开源的聊天应用,使用Exa的API进行网络搜索,结合Deepseek R1进行推理。
Exa & Deepseek Chat App是一个开源的聊天应用,旨在通过Exa的API进行实时网络搜索,并结合Deepseek R1语言模型进行推理,以提供更准确的聊天体验。该应用基于Next.js、TailwindCSS和TypeScript构建,使用Vercel进行托管。它允许用户在聊天中获取最新的网络信息,并通过强大的语言模型进行智能对话。该应用免费开源,适合开发者和企业用户使用,可作为聊天工具的开发基础。
低成本强化视觉语言模型的泛化能力,仅需不到3美元。
R1-V是一个专注于强化视觉语言模型(VLM)泛化能力的项目。它通过可验证奖励的强化学习(RLVR)技术,显著提升了VLM在视觉计数任务中的泛化能力,尤其是在分布外(OOD)测试中表现出色。该技术的重要性在于,它能够在极低的成本下(仅需2.62美元的训练成本),实现对大规模模型的高效优化,为视觉语言模型的实用化提供了新的思路。项目背景基于对现有VLM训练方法的改进,目标是通过创新的训练策略,提升模型在复杂视觉任务中的表现。R1-V的开源性质也使其成为研究者和开发者探索和应用先进VLM技术的重要资源。
一种用于控制视频扩散模型运动模式的高效方法,支持运动模式的自定义和迁移。
Go with the Flow 是一种创新的视频生成技术,通过使用扭曲噪声代替传统的高斯噪声,实现了对视频扩散模型运动模式的高效控制。该技术无需对原始模型架构进行修改,即可在不增加计算成本的情况下,实现对视频中物体和相机运动的精确控制。其主要优点包括高效性、灵活性和可扩展性,能够广泛应用于图像到视频生成、文本到视频生成等多种场景。该技术由 Netflix Eyeline Studios 等机构的研究人员开发,具有较高的学术价值和商业应用潜力,目前开源免费提供给公众使用。
持续搜索和阅读网页,直到找到答案(或超出token预算)。
node-DeepResearch 是一个基于 Jina AI 技术的深度研究模型,专注于通过持续搜索和阅读网页来寻找问题的答案。它利用 Gemini 提供的 LLM 能力和 Jina Reader 的网页搜索功能,能够处理复杂的查询任务,并通过多步骤的推理和信息整合来生成答案。该模型的主要优点在于其强大的信息检索能力和推理能力,能够处理复杂的、需要多步骤解答的问题。它适用于需要深入研究和信息挖掘的场景,如学术研究、市场分析等。目前该模型是开源的,用户可以通过 GitHub 获取代码并自行部署使用。
Mistral Small 24B 是一款多语言、高性能的指令微调型大型语言模型,适用于多种应用场景。
Mistral Small 24B 是一款由 Mistral AI 团队开发的大型语言模型,拥有 240 亿参数,支持多语言对话和指令处理。该模型通过指令微调,能够生成高质量的文本内容,适用于聊天、写作、编程辅助等多种场景。其主要优点包括强大的语言生成能力、多语言支持以及高效推理能力。该模型适合需要高性能语言处理的个人和企业用户,具有开源许可,支持本地部署和量化优化,适合对数据隐私有要求的场景。
Tülu 3 405B 是一个大规模开源语言模型,通过强化学习提升性能。
Tülu 3 405B 是由 Allen Institute for AI 开发的开源语言模型,具有 4050 亿参数。该模型通过创新的强化学习框架(RLVR)提升性能,尤其在数学和指令跟随任务中表现出色。它基于 Llama-405B 模型进行优化,采用监督微调、偏好优化等技术。Tülu 3 405B 的开源性质使其成为研究和开发领域的强大工具,适用于需要高性能语言模型的各种应用场景。
Mistral Small 3 是一款开源的 24B 参数模型,专为低延迟和高效性能设计。
Mistral Small 3 是由 Mistral AI 推出的一款开源语言模型,具有 24B 参数,采用 Apache 2.0 许可证。该模型专为低延迟和高效性能设计,适合需要快速响应的生成式 AI 任务。它在多任务语言理解(MMLU)基准测试中达到 81% 的准确率,并且能够以每秒 150 个标记的速度生成文本。Mistral Small 3 的设计目标是提供一个强大的基础模型,用于本地部署和定制化开发,支持多种行业应用,如金融服务、医疗保健和机器人技术等。该模型未使用强化学习(RL)或合成数据训练,因此在模型生产管线中处于较早期阶段,适合用于构建推理能力。
这是一个完全开放的 DeepSeek-R1 模型的复现项目,旨在帮助开发者复现和构建基于 R1 的模型。
huggingface/open-r1 是一个开源项目,致力于复现 DeepSeek-R1 模型。该项目提供了一系列脚本和工具,用于训练、评估和生成合成数据,支持多种训练方法和硬件配置。其主要优点是完全开放,允许开发者自由使用和改进,对于希望在深度学习和自然语言处理领域进行研究和开发的用户来说,是一个非常有价值的资源。该项目目前没有明确的定价,适合学术研究和商业用途。
PengChengStarling 是一个基于 icefall 项目的多语言自动语音识别(ASR)模型开发工具包。
PengChengStarling 是一个专注于多语言自动语音识别(ASR)的开源工具包,基于 icefall 项目开发。它支持完整的 ASR 流程,包括数据处理、模型训练、推理、微调和部署。该工具包通过优化参数配置和集成语言 ID 到 RNN-Transducer 架构中,显著提升了多语言 ASR 系统的性能。其主要优点包括高效的多语言支持、灵活的配置设计以及强大的推理性能。PengChengStarling 的模型在多种语言上表现出色,且模型规模较小,推理速度极快,适合需要高效语音识别的场景。
Janus-Pro-1B 是一个统一多模态理解和生成的自回归框架。
Janus-Pro-1B 是一个创新的多模态模型,专注于统一多模态理解和生成。它通过分离视觉编码路径,解决了传统方法在理解和生成任务中的冲突问题,同时保持了单个统一的 Transformer 架构。这种设计不仅提高了模型的灵活性,还使其在多模态任务中表现出色,甚至超越了特定任务的模型。该模型基于 DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base 构建,使用 SigLIP-L 作为视觉编码器,支持 384x384 的图像输入,并采用特定的图像生成 tokenizer。其开源性和灵活性使其成为下一代多模态模型的有力候选。
首个面向语境智能的人类级实时交互系统,支持多情感、多风格语音交互。
SpeechGPT 2.0-preview 是一款由复旦大学自然语言处理实验室开发的先进语音交互模型。它通过海量语音数据训练,实现了低延迟、高自然度的语音交互能力。该模型能够模拟多种情感、风格和角色的语音表达,同时支持工具调用、在线搜索和外部知识库访问等功能。其主要优点包括强大的语音风格泛化能力、多角色模拟以及低延迟交互体验。目前该模型仅支持中文语音交互,未来计划扩展到更多语言。
YuE是一个开源的音乐生成模型,能够将歌词转化为完整的歌曲。
YuE是一个开创性的开源基础模型系列,专为音乐生成设计,能够将歌词转化为完整的歌曲。它能够生成包含吸引人的主唱和配套伴奏的完整歌曲,支持多种音乐风格。该模型基于深度学习技术,具有强大的生成能力和灵活性,能够为音乐创作者提供强大的工具支持。其开源特性也使得研究人员和开发者可以在此基础上进行进一步的研究和开发。
一款基于StyleTTS 2架构的先进AI文本转语音模型,拥有8200万参数,提供高质量的自然语音合成。
Kokoro TTS是一款专注于文本转语音的AI模型,其主要功能是将文本内容转换为自然流畅的语音输出。该模型基于StyleTTS 2架构,拥有8200万参数,能够在保持高质量语音合成的同时,提供高效的性能和较低的资源消耗。其多语言支持和可定制的语音包使其能够满足不同用户在多种场景下的需求,如制作有声读物、播客、培训视频等,尤其适合教育领域,帮助提升内容的可访问性和吸引力。此外,Kokoro TTS是开源的,用户可以免费使用,这使得它在成本效益上具有显著优势。
© 2025 AIbase 备案号:闽ICP备08105208号-14