需求人群:
"CheXagent可用于自动化胸部X光解读,可协助医生进行临床决策,并改善患者预后。"
使用场景示例:
医院放射科使用CheXagent来辅助胸部X光解读
医学研究机构利用CheXagent进行临床相关的胸部X光解读任务
医学影像公司将CheXagent集成到其医学影像解决方案中
产品特色:
解析放射学报告
表示X光图像
桥接视觉和语言模态
系统评估性能
浏览量:49
最新流量情况
月访问量
29742.94k
平均访问时长
00:04:44
每次访问页数
5.85
跳出率
44.20%
流量来源
直接访问
50.45%
自然搜索
33.93%
邮件
0.03%
外链引荐
12.90%
社交媒体
2.67%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
21.55%
印度
7.98%
日本
2.93%
俄罗斯
5.29%
美国
16.06%
基于视觉语言基础模型的胸部X光解读
CheXagent是一个基于视觉语言基础模型的胸部X光解读工具。它利用临床大型语言模型来解析放射学报告,视觉编码器用于表示X光图像,并设计了一个网络来桥接视觉和语言模态。此外,CheXagent还引入了CheXbench,一个旨在系统评估基于视觉语言基础模型在8个临床相关的胸部X光解读任务上的性能的新型基准。经过广泛的定量评估和与五名专家放射科医生的定性评审,CheXagent在CheXbench任务上的表现优于先前开发的通用和医学领域的基础模型。
Cenote 提供先进的 AI 技术,帮助医疗机构优化患者接待流程,减少工作量。
Cenote 是一款面向医疗机构的 AI 驱动的患者接待自动化平台。它通过智能技术优化患者信息处理流程,减少医护人员的行政负担,提高工作效率。Cenote 的核心优势在于其强大的 AI 能力,能够自动分类文件、检测数据缺失、提取和存储数据,并自动处理保险授权。该平台旨在帮助医疗机构在数字化转型中保持领先地位,提升患者体验和运营效率。Cenote 的价格和具体定位未在页面中明确说明,但其目标是为医疗机构提供高效、无缝的解决方案。
8亿参数的多语言视觉语言模型,支持OCR、图像描述、视觉推理等功能
CohereForAI的Aya Vision 8B是一个8亿参数的多语言视觉语言模型,专为多种视觉语言任务优化,支持OCR、图像描述、视觉推理、总结、问答等功能。该模型基于C4AI Command R7B语言模型,结合SigLIP2视觉编码器,支持23种语言,具有16K上下文长度。其主要优点包括多语言支持、强大的视觉理解能力以及广泛的适用场景。该模型以开源权重形式发布,旨在推动全球研究社区的发展。根据CC-BY-NC许可协议,用户需遵守C4AI的可接受使用政策。
Microsoft Dragon Copilot 是一款用于医疗行业的 AI 工作空间,可简化临床文档工作流,提升效率。
Microsoft Dragon Copilot 是微软针对医疗保健领域推出的 AI 驱动的临床工作流解决方案,旨在通过自动化和智能化的文档处理技术,帮助医疗专业人员减少行政负担,专注于患者护理。该产品利用先进的自然语言处理和机器学习技术,能够自动捕捉多语言的医患对话,并将其转化为详细的临床文档。其主要优点包括高效率的文档生成、定制化功能以及与现有电子健康记录(EHR)系统的无缝集成。Dragon Copilot 面向医疗机构和临床医生,旨在通过技术提升医疗服务质量和效率,同时降低运营成本。产品定价和具体价格策略未在页面中明确提及,但通常会根据医疗机构的规模和使用范围进行定制化报价。
SigLIP2 是谷歌推出的一种多语言视觉语言编码器,用于零样本图像分类。
SigLIP2 是谷歌开发的多语言视觉语言编码器,具有改进的语义理解、定位和密集特征。它支持零样本图像分类,能够通过文本描述直接对图像进行分类,无需额外训练。该模型在多语言场景下表现出色,适用于多种视觉语言任务。其主要优点包括高效的语言图像对齐能力、支持多种分辨率和动态分辨率调整,以及强大的跨语言泛化能力。SigLIP2 的推出为多语言视觉任务提供了新的解决方案,尤其适合需要快速部署和多语言支持的场景。
VLM-R1 是一个稳定且通用的强化视觉语言模型,专注于视觉理解任务。
VLM-R1 是一种基于强化学习的视觉语言模型,专注于视觉理解任务,如指代表达理解(Referring Expression Comprehension, REC)。该模型通过结合 R1(Reinforcement Learning)和 SFT(Supervised Fine-Tuning)方法,展示了在领域内和领域外数据上的出色性能。VLM-R1 的主要优点包括其稳定性和泛化能力,使其能够在多种视觉语言任务中表现出色。该模型基于 Qwen2.5-VL 构建,利用了先进的深度学习技术,如闪存注意力机制(Flash Attention 2),以提高计算效率。VLM-R1 旨在为视觉语言任务提供一种高效且可靠的解决方案,适用于需要精确视觉理解的应用场景。
MedRAX是一个用于胸部X光片解读的医疗推理AI代理,整合多种分析工具,无需额外训练即可处理复杂医疗查询。
MedRAX是一个创新的AI框架,专门用于胸部X光(CXR)的智能分析。它通过整合最先进的CXR分析工具和多模态大型语言模型,能够动态处理复杂的医疗查询。MedRAX无需额外训练即可运行,支持实时CXR解读,适用于多种临床场景。其主要优点包括高度的灵活性、强大的推理能力以及透明的工作流程。该产品面向医疗专业人员,旨在提高诊断效率和准确性,推动医疗AI的实用化。
低成本强化视觉语言模型的泛化能力,仅需不到3美元。
R1-V是一个专注于强化视觉语言模型(VLM)泛化能力的项目。它通过可验证奖励的强化学习(RLVR)技术,显著提升了VLM在视觉计数任务中的泛化能力,尤其是在分布外(OOD)测试中表现出色。该技术的重要性在于,它能够在极低的成本下(仅需2.62美元的训练成本),实现对大规模模型的高效优化,为视觉语言模型的实用化提供了新的思路。项目背景基于对现有VLM训练方法的改进,目标是通过创新的训练策略,提升模型在复杂视觉任务中的表现。R1-V的开源性质也使其成为研究者和开发者探索和应用先进VLM技术的重要资源。
百川智能开发的专为医疗场景优化的开源大语言模型,具备卓越的通用能力和医疗领域性能。
Baichuan-M1-14B 是由百川智能开发的开源大语言模型,专为医疗场景优化。它基于20万亿token的高质量医疗与通用数据训练,覆盖20多个医疗科室,具备强大的上下文理解和长序列任务表现能力。该模型在医疗领域表现出色,同时在通用任务中也达到了同尺寸模型的效果。其创新的模型结构和训练方法使其在医疗推理、病症判断等复杂任务中表现出色,为医疗领域的人工智能应用提供了强大的支持。
一个强大的OCR包,使用最先进的视觉语言模型提取图像中的文本。
ollama-ocr是一个基于ollama的光学字符识别(OCR)模型,能够从图像中提取文本。它利用先进的视觉语言模型,如LLaVA、Llama 3.2 Vision和MiniCPM-V 2.6,提供高精度的文本识别。该模型对于需要从图片中获取文本信息的场景非常有用,如文档扫描、图像内容分析等。它开源免费,易于集成到各种项目中。
开源的视觉语言模型,可在多种设备上运行。
Moondream AI是一个开源的视觉语言模型,具有强大的多模态处理能力。它支持多种量化格式,如fp16、int8、int4,能够在服务器、PC、移动设备等多种目标设备上进行GPU和CPU优化推理。其主要优点包括快速、高效、易于部署,且采用Apache 2.0许可证,允许用户自由使用和修改。Moondream AI的定位是为开发者提供一个灵活、高效的人工智能解决方案,适用于需要视觉和语言处理能力的各种应用场景。
医疗领域先进的大型语言模型
HuatuoGPT-o1-70B是由FreedomIntelligence开发的医疗领域大型语言模型(LLM),专为复杂的医疗推理设计。该模型在提供最终响应之前,会生成一个复杂的思考过程,反映并完善其推理。HuatuoGPT-o1-70B能够处理复杂的医疗问题,提供深思熟虑的答案,这对于提高医疗决策的质量和效率至关重要。该模型基于LLaMA-3.1-70B架构,支持英文,并且可以部署在多种工具上,如vllm或Sglang,或者直接进行推理。
医疗领域大型语言模型,用于高级医疗推理
HuatuoGPT-o1-7B是由FreedomIntelligence开发的医疗领域大型语言模型(LLM),专为高级医疗推理设计。该模型在提供最终回答之前,会生成复杂的思考过程,反映并完善其推理。HuatuoGPT-o1-7B支持中英文,能够处理复杂的医疗问题,并以'思考-回答'的格式输出结果,这对于提高医疗决策的透明度和可靠性至关重要。该模型基于Qwen2.5-7B,经过特殊训练以适应医疗领域的需求。
先进的医疗领域大型语言模型
HuatuoGPT-o1-8B 是一个专为高级医疗推理设计的医疗领域大型语言模型(LLM)。它在提供最终响应之前会生成一个复杂的思考过程,反映并完善其推理过程。该模型基于LLaMA-3.1-8B构建,支持英文,并且采用'thinks-before-it-answers'的方法,输出格式包括推理过程和最终响应。此模型在医疗领域具有重要意义,因为它能够处理复杂的医疗问题并提供深思熟虑的答案,这对于提高医疗决策的质量和效率至关重要。
医疗领域复杂推理的大型语言模型
HuatuoGPT-o1是一个专为医疗复杂推理设计的大语言模型,能够识别错误、探索替代策略并完善答案。该模型通过利用可验证的医疗问题和专门的医疗验证器,推进了复杂推理的发展。HuatuoGPT-o1的主要优点包括:使用验证器指导复杂推理轨迹的搜索,以微调大型语言模型;应用基于验证器奖励的强化学习(PPO)进一步提升复杂推理能力。HuatuoGPT-o1的开源模型、数据和代码,使其在医疗教育和研究领域具有重要价值。
CogAgent-9B-20241220是基于视觉语言模型的GUI代理模型。
CogAgent-9B-20241220模型基于GLM-4V-9B双语开源VLM基础模型,通过数据收集和优化、多阶段训练以及策略改进,在GUI感知、推理预测准确性、动作空间完整性和任务泛化性方面取得了显著进步。该模型支持双语(中文和英文)交互,并能处理屏幕截图和语言输入。此版本已应用于ZhipuAI的GLM-PC产品中,旨在帮助研究人员和开发者推进基于视觉语言模型的GUI代理的研究和应用。
利用视觉语言模型将PDF解析为Markdown。
vision-parse是一个利用视觉语言模型(Vision LLMs)将PDF文档解析为格式化良好的Markdown内容的工具。它支持多种模型,包括OpenAI、LLama和Gemini等,能够智能识别和提取文本及表格,并保持文档的层级结构、样式和缩进。该工具的主要优点包括高精度的内容提取、格式保持、支持多模型以及本地模型托管,适用于需要高效文档处理的用户。
开源的端到端视觉语言模型(VLM)基础的GUI代理
CogAgent是一个基于视觉语言模型(VLM)的GUI代理,它通过屏幕截图和自然语言实现双语(中文和英文)交云。CogAgent在GUI感知、推理预测准确性、操作空间完整性和任务泛化方面取得了显著进步。该模型已经在ZhipuAI的GLM-PC产品中得到应用,旨在帮助研究人员和开发者推进基于视觉语言模型的GUI代理的研究和应用。
先进的大型混合专家视觉语言模型
DeepSeek-VL2是一系列先进的大型混合专家(MoE)视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解、视觉定位等多项任务中展现出卓越的能力。DeepSeek-VL2由三种变体组成:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有1.0B、2.8B和4.5B激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集型和基于MoE的模型相比,达到了竞争性或最先进的性能。
视觉语言模型的最新进展,集成微信AI的新技术
POINTS-Yi-1.5-9B-Chat是一个视觉语言模型,它集成了最新的视觉语言模型技术和微信AI提出的新技术。该模型在预训练数据集过滤、模型汤(Model Soup)技术等方面有显著创新,能够显著减少预训练数据集的大小并提高模型性能。它在多个基准测试中表现优异,是视觉语言模型领域的一个重要进展。
视觉语言模型的最新进展
POINTS-Qwen-2-5-7B-Chat是一个集成了视觉语言模型最新进展和新技巧的模型,由微信AI的研究人员提出。它通过预训练数据集筛选、模型汤等技术,显著提升了模型性能。这个模型在多个基准测试中表现优异,是视觉语言模型领域的一个重要进步。
先进的多模态理解模型,融合视觉与语言能力。
DeepSeek-VL2是一系列大型Mixture-of-Experts视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解以及视觉定位等任务上展现出卓越的能力。DeepSeek-VL2包含三个变体:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有1.0B、2.8B和4.5B激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集和MoE基础模型相比,达到了竞争性或最先进的性能。
一款AI视觉语言模型,提供图像分析和描述服务。
InternVL是一个AI视觉语言模型,专注于图像分析和描述。它通过深度学习技术,能够理解和解释图像内容,为用户提供准确的图像描述和分析结果。InternVL的主要优点包括高准确性、快速响应和易于集成。该技术背景基于最新的人工智能研究,致力于提高图像识别的效率和准确性。目前,InternVL提供免费试用,具体价格和定位需要根据用户需求定制。
视觉语言模型增强工具,结合生成式视觉编码器和深度广度融合技术。
Florence-VL是一个视觉语言模型,通过引入生成式视觉编码器和深度广度融合技术,增强了模型对视觉和语言信息的处理能力。该技术的重要性在于其能够提升机器对图像和文本的理解,进而在多模态任务中取得更好的效果。Florence-VL基于LLaVA项目进行开发,提供了预训练和微调的代码、模型检查点和演示。
Qwen2-VL-7B是最新的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-7B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。此外,Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
最先进的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-2B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
PaliGemma 2是功能强大的视觉语言模型,简单易调优。
PaliGemma 2是Gemma家族中的第二代视觉语言模型,它在性能上进行了扩展,增加了视觉能力,使得模型能够看到、理解和与视觉输入交互,开启了新的可能性。PaliGemma 2基于高性能的Gemma 2模型构建,提供了多种模型尺寸(3B、10B、28B参数)和分辨率(224px、448px、896px)以优化任何任务的性能。此外,PaliGemma 2在化学公式识别、乐谱识别、空间推理和胸部X光报告生成等方面展现出领先的性能。PaliGemma 2旨在为现有PaliGemma用户提供便捷的升级路径,作为即插即用的替代品,大多数任务无需大幅修改代码即可获得性能提升。
© 2025 AIbase 备案号:闽ICP备08105208号-14