需求人群:
"CheXagent可用于自动化胸部X光解读,可协助医生进行临床决策,并改善患者预后。"
使用场景示例:
医院放射科使用CheXagent来辅助胸部X光解读
医学研究机构利用CheXagent进行临床相关的胸部X光解读任务
医学影像公司将CheXagent集成到其医学影像解决方案中
产品特色:
解析放射学报告
表示X光图像
桥接视觉和语言模态
系统评估性能
浏览量:52
最新流量情况
月访问量
23904.81k
平均访问时长
00:04:51
每次访问页数
5.82
跳出率
43.33%
流量来源
直接访问
48.28%
自然搜索
35.88%
邮件
0.03%
外链引荐
12.71%
社交媒体
3.06%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
基于视觉语言基础模型的胸部X光解读
CheXagent是一个基于视觉语言基础模型的胸部X光解读工具。它利用临床大型语言模型来解析放射学报告,视觉编码器用于表示X光图像,并设计了一个网络来桥接视觉和语言模态。此外,CheXagent还引入了CheXbench,一个旨在系统评估基于视觉语言基础模型在8个临床相关的胸部X光解读任务上的性能的新型基准。经过广泛的定量评估和与五名专家放射科医生的定性评审,CheXagent在CheXbench任务上的表现优于先前开发的通用和医学领域的基础模型。
Rayscape | 放射学人工智能
Rayscape是一款先进的放射学人工智能解决方案,通过使用前沿的深度学习技术,提高X射线和CT的准确性和效率。我们为肺癌筛查、诊断成像和肿瘤学提供AI辅助诊断。
医疗领域先进的大型语言模型
HuatuoGPT-o1-70B是由FreedomIntelligence开发的医疗领域大型语言模型(LLM),专为复杂的医疗推理设计。该模型在提供最终响应之前,会生成一个复杂的思考过程,反映并完善其推理。HuatuoGPT-o1-70B能够处理复杂的医疗问题,提供深思熟虑的答案,这对于提高医疗决策的质量和效率至关重要。该模型基于LLaMA-3.1-70B架构,支持英文,并且可以部署在多种工具上,如vllm或Sglang,或者直接进行推理。
医疗领域大型语言模型,用于高级医疗推理
HuatuoGPT-o1-7B是由FreedomIntelligence开发的医疗领域大型语言模型(LLM),专为高级医疗推理设计。该模型在提供最终回答之前,会生成复杂的思考过程,反映并完善其推理。HuatuoGPT-o1-7B支持中英文,能够处理复杂的医疗问题,并以'思考-回答'的格式输出结果,这对于提高医疗决策的透明度和可靠性至关重要。该模型基于Qwen2.5-7B,经过特殊训练以适应医疗领域的需求。
先进的医疗领域大型语言模型
HuatuoGPT-o1-8B 是一个专为高级医疗推理设计的医疗领域大型语言模型(LLM)。它在提供最终响应之前会生成一个复杂的思考过程,反映并完善其推理过程。该模型基于LLaMA-3.1-8B构建,支持英文,并且采用'thinks-before-it-answers'的方法,输出格式包括推理过程和最终响应。此模型在医疗领域具有重要意义,因为它能够处理复杂的医疗问题并提供深思熟虑的答案,这对于提高医疗决策的质量和效率至关重要。
通用型视觉语言模型
Qwen-VL 是阿里云推出的通用型视觉语言模型,具有强大的视觉理解和多模态推理能力。它支持零样本图像描述、视觉问答、文本理解、图像地标定位等任务,在多个视觉基准测试中达到或超过当前最优水平。该模型采用 Transformer 结构,以 7B 参数规模进行预训练,支持 448x448 分辨率,可以端到端处理图像与文本的多模态输入与输出。Qwen-VL 的优势包括通用性强、支持多语种、细粒度理解等。它可以广泛应用于图像理解、视觉问答、图像标注、图文生成等任务。
医疗领域复杂推理的大型语言模型
HuatuoGPT-o1是一个专为医疗复杂推理设计的大语言模型,能够识别错误、探索替代策略并完善答案。该模型通过利用可验证的医疗问题和专门的医疗验证器,推进了复杂推理的发展。HuatuoGPT-o1的主要优点包括:使用验证器指导复杂推理轨迹的搜索,以微调大型语言模型;应用基于验证器奖励的强化学习(PPO)进一步提升复杂推理能力。HuatuoGPT-o1的开源模型、数据和代码,使其在医疗教育和研究领域具有重要价值。
强大的开源视觉语言模型
CogVLM是一个强大的开源视觉语言模型。CogVLM-17B拥有100亿个视觉参数和70亿个语言参数。CogVLM-17B在10个经典的跨模态基准测试中取得了最先进的性能,包括NoCaps、Flicker30k字幕、RefCOCO、RefCOCO+、RefCOCOg、Visual7W、GQA、ScienceQA、VizWiz VQA和TDIUC,并在VQAv2、OKVQA、TextVQA、COCO字幕等方面排名第二,超过或与PaLI-X 55B相匹配。CogVLM还可以与您就图像进行对话。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
PaliGemma 2是一个强大的视觉-语言模型,支持多种视觉语言任务。
PaliGemma 2是一个由Google开发的视觉-语言模型,继承了Gemma 2模型的能力,能够处理图像和文本输入并生成文本输出。该模型在多种视觉语言任务上表现出色,如图像描述、视觉问答等。其主要优点包括强大的多语言支持、高效的训练架构和广泛的适用性。该模型适用于需要处理视觉和文本数据的各种应用场景,如社交媒体内容生成、智能客服等。
高效开源的视觉语言模型
SmolVLM是一个小型但功能强大的视觉语言模型(VLM),拥有2B参数,以其较小的内存占用和高效性能在同类模型中处于领先地位。SmolVLM完全开源,包括所有模型检查点、VLM数据集、训练配方和工具均在Apache 2.0许可下发布。该模型适合在浏览器或边缘设备上进行本地部署,降低推理成本,并允许用户自定义。
开源视觉基础模型
InternVL通过将ViT模型扩展到60亿参数并与语言模型对齐,构建出目前最大的14B开源视觉基础模型,在视觉感知、跨模态检索、多模态对话等广泛任务上取得了32项state-of-the-art性能。
一款强大的小型视觉语言模型,无处不在
moondream是一个使用SigLIP、Phi-1.5和LLaVA训练数据集构建的16亿参数模型。由于使用了LLaVA数据集,权重受CC-BY-SA许可证保护。您可以在Huggingface Spaces上尝试使用它。该模型在VQAv2、GQA、VizWiz和TextVQA基准测试中表现如下:LLaVA-1.5(13.3B参数):80.0、63.3、53.6、61.3;LLaVA-1.5(7.3B参数):78.5、62.0、50.0、58.2;MC-LLaVA-3B(3B参数):64.2、49.6、24.9、38.6;LLaVA-Phi(3B参数):71.4、-、35.9、48.6;moondream1(1.6B参数):74.3、56.3、30.3、39.8。
先进的视觉基础模型,支持多种视觉和视觉-语言任务
Florence-2是由微软开发的高级视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示,执行诸如图像描述、目标检测和分割等任务。它利用FLD-5B数据集,包含54亿个注释,覆盖1.26亿张图像,精通多任务学习。其序列到序列的架构使其在零样本和微调设置中均表现出色,证明是一个有竞争力的视觉基础模型。
基于强化学习技术的视觉思考模型,理科测试行业领先
Kimi视觉思考模型k1是基于强化学习技术打造的AI模型,原生支持端到端图像理解和思维链技术,并将能力扩展到数学之外的更多基础科学领域。在数学、物理、化学等基础科学学科的基准能力测试中,k1模型的表现超过了全球标杆模型。k1模型的发布标志着AI在视觉理解和思考能力上的新突破,尤其在处理图像信息和基础科学问题上展现出色的表现。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-26B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型保持了其前身的“ViT-MLP-LLM”核心模型架构,并集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5系列模型在多模态任务中展现出卓越的性能,尤其在视觉感知和多模态能力方面。
Google的尖端开放视觉语言模型
PaliGemma是Google发布的一款先进的视觉语言模型,它结合了图像编码器SigLIP和文本解码器Gemma-2B,能够理解图像和文本,并通过联合训练实现图像和文本的交互理解。该模型专为特定的下游任务设计,如图像描述、视觉问答、分割等,是研究和开发领域的重要工具。
视觉语言模型高效文档检索工具
ColPali 是一种基于视觉语言模型的高效文档检索工具,它通过直接嵌入文档页面图像的方式来简化文档检索流程。ColPali 利用了最新的视觉语言模型技术,特别是 PaliGemma 模型,通过晚交互机制实现多向量检索,从而提高检索性能。这一技术不仅加快了索引速度,降低了查询延迟,而且在检索包含视觉元素的文档方面表现出色,例如图表、表格和图像。ColPali 的出现,为文档检索领域带来了一种新的“视觉空间检索”范式,有助于提高信息检索的效率和准确性。
视觉语言模型,能够进行逐步推理
LLaVA-o1是北京大学元组团队开发的一个视觉语言模型,它能够进行自发的、系统的推理,类似于GPT-o1。该模型在六个具有挑战性的多模态基准测试中超越了其他模型,包括Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-Vision-Instruct。LLaVA-o1通过逐步推理解决问题,展示了其在视觉语言模型中的独特优势。
给视觉语言模型赋予空间推理能力
SpatialVLM是一个由谷歌DeepMind开发的视觉语言模型,能够对空间关系进行理解和推理。它通过大规模合成数据的训练,获得了像人类一样直观地进行定量空间推理的能力。这不仅提高了其在空间VQA任务上的表现,还为链式空间推理和机器人控制等下游任务打开了新的可能。
多模态大型语言模型,提升视觉与语言的交互能力
InternVL2_5-8B-MPO-AWQ是OpenGVLab推出的一款多模态大型语言模型,它基于InternVL2.5系列,并采用混合偏好优化(Mixed Preference Optimization, MPO)技术。该模型在视觉和语言的理解与生成方面展现了卓越的性能,尤其在多模态任务中表现出色。它通过结合视觉部分InternViT和语言部分InternLM或Qwen,使用随机初始化的MLP投影器进行增量预训练,实现了对图像和文本的深入理解与交互。该技术的重要性在于它能够处理包括单图像、多图像以及视频数据在内的多种数据类型,为多模态人工智能领域提供了新的解决方案。
高效的视觉编码技术,提升视觉语言模型性能。
FastVLM 是一种高效的视觉编码模型,专为视觉语言模型设计。它通过创新的 FastViTHD 混合视觉编码器,减少了高分辨率图像的编码时间和输出的 token 数量,使得模型在速度和精度上表现出色。FastVLM 的主要定位是为开发者提供强大的视觉语言处理能力,适用于各种应用场景,尤其在需要快速响应的移动设备上表现优异。
大型语言模型是视觉推理协调器
Cola是一种使用语言模型(LM)来聚合2个或更多视觉-语言模型(VLM)输出的方法。我们的模型组装方法被称为Cola(COordinative LAnguage model or visual reasoning)。Cola在LM微调(称为Cola-FT)时效果最好。Cola在零样本或少样本上下文学习(称为Cola-Zero)时也很有效。除了性能提升外,Cola还对VLM的错误更具鲁棒性。我们展示了Cola可以应用于各种VLM(包括大型多模态模型如InstructBLIP)和7个数据集(VQA v2、OK-VQA、A-OKVQA、e-SNLI-VE、VSR、CLEVR、GQA),并且它始终提高了性能。
百川智能开发的专为医疗场景优化的开源大语言模型,具备卓越的通用能力和医疗领域性能。
Baichuan-M1-14B 是由百川智能开发的开源大语言模型,专为医疗场景优化。它基于20万亿token的高质量医疗与通用数据训练,覆盖20多个医疗科室,具备强大的上下文理解和长序列任务表现能力。该模型在医疗领域表现出色,同时在通用任务中也达到了同尺寸模型的效果。其创新的模型结构和训练方法使其在医疗推理、病症判断等复杂任务中表现出色,为医疗领域的人工智能应用提供了强大的支持。
PaLI-3 视觉语言模型:更小、更快、更强
Pali3是一种视觉语言模型,通过对图像进行编码并与查询一起传递给编码器-解码器Transformer来生成所需的答案。该模型经过多个阶段的训练,包括单模态预训练、多模态训练、分辨率增加和任务专业化。Pali3的主要功能包括图像编码、文本编码、文本生成等。该模型适用于图像分类、图像字幕、视觉问答等任务。Pali3的优势在于模型结构简单、训练效果好、速度快。该产品定价为免费开源。
8亿参数的多语言视觉语言模型,支持OCR、图像描述、视觉推理等功能
CohereForAI的Aya Vision 8B是一个8亿参数的多语言视觉语言模型,专为多种视觉语言任务优化,支持OCR、图像描述、视觉推理、总结、问答等功能。该模型基于C4AI Command R7B语言模型,结合SigLIP2视觉编码器,支持23种语言,具有16K上下文长度。其主要优点包括多语言支持、强大的视觉理解能力以及广泛的适用场景。该模型以开源权重形式发布,旨在推动全球研究社区的发展。根据CC-BY-NC许可协议,用户需遵守C4AI的可接受使用政策。
媲美人类护士的医疗护理保健模型
Polaris是由Hippocratic AI 开发的一款高度专注于安全、用于医疗保健的大语言模型(LLM)系统,通过星座架构和专业支持代理组合,能够执行多项医疗相关的复杂任务。产品定位于提供与患者长时间、多轮次的语音对话,并提供专业准确的医疗建议。价格方面,按小时计费,每小时9美元。主要功能包括实时多轮语音对话、医疗信息提供和解释、隐私与合规性检查、药物管理和咨询、实验室与生命体征分析、营养建议、病历和政策查询、患者关系建设等。
© 2025 AIbase 备案号:闽ICP备08105208号-14