需求人群:
"目标受众为在线商务平台、广告制作公司、视频内容创作者等,他们需要制作吸引人的产品推广视频,提高用户参与度和产品销量。AnchorCrafter通过自动化视频生成,降低了制作成本,提高了生产效率,同时保证了视频的高质量和交互性,非常适合这些用户的需求。"
使用场景示例:
在线电商平台使用AnchorCrafter生成产品推广视频,提高用户点击率和购买转化。
广告公司利用该技术为客户定制个性化的广告视频,增强品牌形象。
视频内容创作者使用AnchorCrafter制作包含复杂交互场景的短视频,提升内容吸引力。
产品特色:
- HOI-外观感知:通过多视角对象特征融合,结合人物参考特征,实现更好的解耦结果。
- HOI-运动注入:控制运动,通过HOI区域的训练目标重新加权,增强对象细节的学习。
- 高视觉保真度:生成的视频具有高清晰度,保持人物和对象的真实感。
- 可控交互:用户可以控制视频中的人物和对象的交互动作。
- 多视角对象特征融合:从不同视角提取对象特征,提高对象识别的准确性。
- 人-物双适配器:结合人物和对象特征,实现更精细的人-物交互动画。
- 训练目标重新加权:在HOI区域增强训练目标,提升对象细节的学习效果。
使用教程:
1. 访问AnchorCrafter的官方网站。
2. 阅读产品介绍和功能说明,了解系统的基本操作。
3. 根据需要准备人物和对象的参考素材。
4. 使用系统提供的界面上传人物和对象的素材,并设置交互场景。
5. 调整视频参数,如人物动作、对象位置等,以满足视频制作需求。
6. 启动视频生成过程,等待系统自动生成视频。
7. 下载或直接在网站上预览生成的视频,并根据需要进行后期编辑。
8. 将生成的视频用于商业推广、广告发布或内容分享。
浏览量:767
最新流量情况
月访问量
959
平均访问时长
00:00:00
每次访问页数
1.02
跳出率
42.45%
流量来源
直接访问
60.67%
自然搜索
25.05%
邮件
0.03%
外链引荐
4.52%
社交媒体
8.93%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
美国
71.38%
基于扩散模型的2D视频生成系统,实现人-物交互动画。
AnchorCrafter是一个创新的扩散模型系统,旨在生成包含目标人物和定制化对象的2D视频,通过人-物交互(HOI)的集成,实现高视觉保真度和可控交互。该系统通过HOI-外观感知增强从任意多视角识别对象外观的能力,并分离人和物的外观;HOI-运动注入则通过克服对象轨迹条件和相互遮挡管理的挑战,实现复杂的人-物交互。此外,HOI区域重新加权损失作为训练目标,增强了对对象细节的学习。该技术在保持对象外观和形状意识的同时,也维持了人物外观和运动的一致性,对于在线商务、广告和消费者参与等领域具有重要意义。
加速视频扩散模型,生成速度提升 8.5 倍。
AccVideo 是一种新颖的高效蒸馏方法,通过合成数据集加速视频扩散模型的推理速度。该模型能够在生成视频时实现 8.5 倍的速度提升,同时保持相似的性能。它使用预训练的视频扩散模型生成多条有效去噪轨迹,从而优化了数据的使用和生成过程。AccVideo 特别适用于需要高效视频生成的场景,如电影制作、游戏开发等,适合研究人员和开发者使用。
On-device Sora 是一个基于扩散模型的移动设备端文本到视频生成项目。
On-device Sora 是一个开源项目,旨在通过线性比例跳跃(LPL)、时间维度标记合并(TDTM)和动态加载并发推理(CI-DL)等技术,实现在移动设备(如 iPhone 15 Pro)上高效的视频生成。该项目基于 Open-Sora 模型开发,能够根据文本输入生成高质量视频。其主要优点包括高效性、低功耗和对移动设备的优化。该技术适用于需要在移动设备上快速生成视频内容的场景,如短视频创作、广告制作等。项目目前开源,用户可以免费使用。
一种用于控制视频扩散模型运动模式的高效方法,支持运动模式的自定义和迁移。
Go with the Flow 是一种创新的视频生成技术,通过使用扭曲噪声代替传统的高斯噪声,实现了对视频扩散模型运动模式的高效控制。该技术无需对原始模型架构进行修改,即可在不增加计算成本的情况下,实现对视频中物体和相机运动的精确控制。其主要优点包括高效性、灵活性和可扩展性,能够广泛应用于图像到视频生成、文本到视频生成等多种场景。该技术由 Netflix Eyeline Studios 等机构的研究人员开发,具有较高的学术价值和商业应用潜力,目前开源免费提供给公众使用。
一种支持多种视频生成控制任务的统一架构模型。
Diffusion as Shader (DaS) 是一种创新的视频生成控制模型,旨在通过3D感知的扩散过程实现对视频生成的多样化控制。该模型利用3D跟踪视频作为控制输入,能够在统一的架构下支持多种视频控制任务,如网格到视频生成、相机控制、运动迁移和对象操作等。DaS的主要优势在于其3D感知能力,能够有效提升生成视频的时间一致性,并在短时间内通过少量数据微调即可展现出强大的控制能力。该模型由香港科技大学等多所高校的研究团队共同开发,旨在推动视频生成技术的发展,为影视制作、虚拟现实等领域提供更为灵活和高效的解决方案。
基于扩散模型的图像和视频生成工具
HelloMeme是一个集成了空间编织注意力(Spatial Knitting Attentions)的扩散模型,用于嵌入高级别和细节丰富的条件。该模型支持图像和视频的生成,具有改善生成视频与驱动视频之间表情一致性、减少VRAM使用、优化算法等优点。HelloMeme由HelloVision团队开发,属于HelloGroup Inc.,是一个前沿的图像和视频生成技术,具有重要的商业和教育价值。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
大规模视频生成的自回归扩散模型
MarDini是Meta AI Research推出的一款视频扩散模型,它将掩码自回归(MAR)的优势整合到统一的扩散模型(DM)框架中。该模型能够根据任意数量的掩码帧在任意帧位置进行视频生成,支持视频插值、图像到视频生成以及视频扩展等多种视频生成任务。MarDini的设计高效,将大部分计算资源分配给低分辨率规划模型,使得在大规模上进行空间-时间注意力成为可能。MarDini在视频插值方面树立了新的标杆,并且在几次推理步骤内,就能高效生成与更昂贵的高级图像到视频模型相媲美的视频。
视频扩散模型加速工具,无需训练即可生成高质量视频内容。
FasterCache是一种创新的无需训练的策略,旨在加速视频扩散模型的推理过程,并生成高质量的视频内容。这一技术的重要性在于它能够显著提高视频生成的效率,同时保持或提升内容的质量,这对于需要快速生成视频内容的行业来说是非常有价值的。FasterCache由来自香港大学、南洋理工大学和上海人工智能实验室的研究人员共同开发,项目页面提供了更多的视觉结果和详细信息。产品目前免费提供,主要面向视频内容生成、AI研究和开发等领域。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
集成空间编织注意力,提升扩散模型的高保真条件
HelloMeme是一个集成了空间编织注意力的扩散模型,旨在将高保真和丰富的条件嵌入到图像生成过程中。该技术通过提取驱动视频中的每一帧特征,并将其作为输入到HMControlModule,从而生成视频。通过进一步优化Animatediff模块,提高了生成视频的连续性和保真度。此外,HelloMeme还支持通过ARKit面部混合形状控制生成的面部表情,以及基于SD1.5的Lora或Checkpoint,实现了框架的热插拔适配器,不会影响T2I模型的泛化能力。
高效生成一致性人物视频动画的模型
UniAnimate是一个用于人物图像动画的统一视频扩散模型框架。它通过将参考图像、姿势指导和噪声视频映射到一个共同的特征空间,以减少优化难度并确保时间上的连贯性。UniAnimate能够处理长序列,支持随机噪声输入和首帧条件输入,显著提高了生成长期视频的能力。此外,它还探索了基于状态空间模型的替代时间建模架构,以替代原始的计算密集型时间Transformer。UniAnimate在定量和定性评估中都取得了优于现有最先进技术的合成结果,并且能够通过迭代使用首帧条件策略生成高度一致的一分钟视频。
视频生成模型,支持无限长度高保真虚拟人视频生成
MuseV是一个基于扩散模型的虚拟人视频生成框架,支持无限长度视频生成,采用了新颖的视觉条件并行去噪方案。它提供了预训练的虚拟人视频生成模型,支持Image2Video、Text2Image2Video、Video2Video等功能,兼容Stable Diffusion生态系统,包括基础模型、LoRA、ControlNet等。它支持多参考图像技术,如IPAdapter、ReferenceOnly、ReferenceNet、IPAdapterFaceID等。MuseV的优势在于可生成高保真无限长度视频,定位于视频生成领域。
基于扩散模型的2D虚拟形象生成框架
Make-Your-Anchor是一个基于扩散模型的2D虚拟形象生成框架。它只需一段1分钟左右的视频素材就可以自动生成具有精确上身和手部动作的主播风格视频。该系统采用了一种结构引导的扩散模型来将3D网格状态渲染成人物外观。通过两阶段训练策略,有效地将运动与特定外观相绑定。为了生成任意长度的时序视频,将frame-wise扩散模型的2D U-Net扩展到3D形式,并提出简单有效的批重叠时序去噪模块,从而突破推理时的视频长度限制。最后,引入了一种基于特定身份的面部增强模块,提高输出视频中面部区域的视觉质量。实验表明,该系统在视觉质量、时序一致性和身份保真度方面均优于现有技术。
大规模视频生成扩散模型
Sora是一个基于大规模训练的文本控制视频生成扩散模型。它能够生成长达1分钟的高清视频,涵盖广泛的视觉数据类型和分辨率。Sora通过在视频和图像的压缩潜在空间中训练,将其分解为时空位置补丁,实现了可扩展的视频生成。Sora还展现出一些模拟物理世界和数字世界的能力,如三维一致性和交互,揭示了继续扩大视频生成模型规模来发展高能力模拟器的前景。
控制视频生成模型
传统的3D内容创作工具赋予用户直接控制场景的几何形状、外观、动作和摄像机路径,从而将他们的想象变为现实。然而,创建计算机生成的视频是一个繁琐的手动过程,可以通过新兴的文本到视频扩散模型实现自动化。尽管前景广阔,视频扩散模型难以控制,限制了用户应用自己的创造力,而不是放大它。为了解决这一挑战,我们提出了一种新颖的方法,将动态3D网格的可控性与新兴扩散模型的表现力和可编辑性相结合。为此,我们的方法以动画化的低保真度渲染网格作为输入,并将从动态网格获得的地面真实对应信息注入预训练的文本到图像生成模型的各个阶段,以输出高质量和时间一致的帧。我们在各种示例上演示了我们的方法,其中动作可以通过对绑定资产进行动画化或改变摄像机路径来获得。
Show-1 将像素和潜在扩散模型结合起来,以实现高效的高质量文本到视频的生成
Show-1是一种高效的文本到视频生成模型,它结合了像素级和潜变量级的扩散模型,既能生成与文本高度相关的视频,也能以较低的计算资源要求生成高质量的视频。它首先用像素级模型生成低分辨率的初步视频,然后使用潜变量模型将其上采样到高分辨率,从而结合两种模型的优势。相比纯潜变量模型,Show-1生成的视频文本关联更准确;相比纯像素模型,它的运算成本也更低。
多模态驱动的定制视频生成架构。
HunyuanCustom 是一个多模态定制视频生成框架,旨在根据用户定义的条件生成特定主题的视频。该技术在身份一致性和多种输入模式的支持上表现出色,能够处理文本、图像、音频和视频输入,适合虚拟人广告、视频编辑等多种应用场景。
通过 MCP 协议访问 PixVerse 最新的视频生成模型。
PixVerse-MCP 是一个工具,允许用户通过支持模型上下文协议(MCP)的应用程序访问 PixVerse 最新的视频生成模型。该产品提供了文本转视频等功能,适用于创作者和开发者,能够在任何地方生成高质量的视频。PixVerse 平台需要 API 积分,用户需自行购买。
一个互动故事讲述的 AI 平台,通过图像和音频生成视频。
AvatarFX 是一个尖端的 AI 平台,专注于互动故事讲述。用户可以通过上传图片和选择声音,快速生成生动、真实的角色视频。其核心技术是基于 DiT 的扩散视频生成模型,能够高效生成高保真、时序一致的视频,特别适合需要多个角色和对话场景的创作。产品定位在为创作者提供工具,帮助他们实现想象力的无限可能。
国产视频生成大模型 Vidu Q1,支持高清 1080p 视频生成,性价比极高。
Vidu Q1 是由生数科技推出的国产视频生成大模型,专为视频创作者设计,支持高清 1080p 视频生成,具备电影级运镜效果和首尾帧功能。该产品在 VBench-1.0 和 VBench-2.0 评测中位居榜首,性价比极高,价格仅为同行的十分之一。它适用于电影、广告、动漫等多个领域,能够大幅降低创作成本,提升创作效率。
全球首个无限时长电影生成模型,开启视频生成新时代
SkyReels-V2 是昆仑万维 SkyReels 团队发布的全球首个使用扩散强迫框架的无限时长电影生成模型。该模型通过结合多模态大语言模型、多阶段预训练、强化学习和扩散强迫框架来实现协同优化,突破了传统视频生成技术在提示词遵循、视觉质量、运动动态和视频时长协调上的重大挑战。它不仅为内容创作者提供了强大的工具,还开启了利用 AI 进行视频叙事和创意表达的无限可能。
开源视频生成模型,支持多种生成任务。
Wan2.1-FLF2V-14B 是一个开源的大规模视频生成模型,旨在推动视频生成领域的进步。该模型在多项基准测试中表现优异,支持消费者级 GPU,能够高效生成 480P 和 720P 的视频。它在文本到视频、图像到视频等多个任务中表现出色,具有强大的视觉文本生成能力,适用于各种实际应用场景。
用于视频生成的下一帧预测模型。
FramePack 是一个创新的视频生成模型,旨在通过压缩输入帧的上下文来提高视频生成的质量和效率。其主要优点在于解决了视频生成中的漂移问题,通过双向采样方法保持视频质量,适合需要生成长视频的用户。该技术背景来源于对现有模型的深入研究和实验,以改进视频生成的稳定性和连贯性。
Pusa 是一个新颖的视频扩散模型,支持多种视频生成任务。
Pusa 通过帧级噪声控制引入视频扩散建模的创新方法,能够实现高质量的视频生成,适用于多种视频生成任务(文本到视频、图像到视频等)。该模型以其卓越的运动保真度和高效的训练过程,提供了一个开源的解决方案,方便用户进行视频生成任务。
Dream 7B 是最强大的开放扩散大语言模型。
Dream 7B 是由香港大学 NLP 组和华为诺亚方舟实验室联合推出的最新扩散大语言模型。它在文本生成领域展现了优异的性能,特别是在复杂推理、长期规划和上下文连贯性等方面。该模型采用了先进的训练方法,具有强大的计划能力和灵活的推理能力,为各类 AI 应用提供了更为强大的支持。
在视频扩散变换器中合成任何内容的框架。
SkyReels-A2 是一个基于视频扩散变换器的框架,允许用户合成和生成视频内容。该模型通过利用深度学习技术,提供了灵活的创作能力,适合多种视频生成应用,尤其是在动画和特效制作方面。该产品的优点在于其开源特性和高效的模型性能,适合研究人员和开发者使用,且目前不收取费用。
OmniTalker 是一个实时文本驱动的生成谈话头框架。
OmniTalker 是由阿里巴巴 Tongyi 实验室提出的一种统一框架,旨在实时生成音频和视频,提升人机交互体验。其创新之处在于解决了传统文本到语音及语音驱动的视频生成方法中常见的音视频不同步、风格不一致及系统复杂性等问题。OmniTalker 采用双分支扩散变换器架构,能够在保持高效的同时实现高保真的音视频输出。其实时推理速度可达每秒 25 帧,适用于各种交互式视频聊天应用,提升了用户体验。
© 2025 AIbase 备案号:闽ICP备08105208号-14