需求人群:
"StemGen可用于构建音乐生成模型、测试集示例、迭代生成示例、实时交互式音乐生成演示等场景。"
使用场景示例:
网站:展示StemGen的模型输出示例
实时交互式音乐生成小程序:展示StemGen的实时交互式音乐生成演示
音乐生成桌面客户端:使用StemGen构建音乐生成模型
产品特色:
模型/数据集
测试集示例
迭代生成示例
从鼓开始
从和弦开始
深度迭代叠加
实时交互式音乐生成演示
浏览量:178
最新流量情况
月访问量
272
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
43.91%
流量来源
直接访问
32.07%
自然搜索
50.32%
邮件
0.62%
外链引荐
13.67%
社交媒体
2.64%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
俄罗斯
100.00%
StemGen: 一款聆听音乐生成模型
StemGen是一款端到端音乐生成模型,训练成能够聆听音乐背景并做出适当回应的模型。它建立在非自回归语言模型类型的架构上,类似于SoundStorm和VampNet。更多细节请参阅论文。该页面展示了该架构模型的多个示例输出。
使用文本生成音乐的模型
FluxMusic是一个基于PyTorch实现的文本到音乐生成模型,它通过扩散式修正流变换器探索了一种简单的文本到音乐生成方法。这个模型可以生成根据文本提示的音乐片段,具有创新性和高度的技术复杂性。它代表了音乐生成领域的前沿技术,为音乐创作提供了新的可能。
让您的音乐创作更快更轻松
Delphos是一款极致的音乐生成软件,可以帮助您轻松生成专业音乐轨道。它具有生成旋律和鼓声的能力,并可以生成高达100个音轨。您可以使用Delphos的试用设计器,或者选择付费使用完整生成器。Delphos还提供Soundworld Builder计划,允许您构建自己的声音世界,进行无限次的训练和生成,以及进行分发和盈利。
Magenta Studio是基于Magenta开源工具和模型构建的一组音乐插件。
Magenta Studio是基于Magenta开源工具和模型构建的一组音乐插件。它使用前沿的机器学习技术进行音乐生成。Magenta Studio提供了独立应用程序和Ableton Live插件两种形态。它们可用于读取和写入MIDI音频,支持Ableton的Session View和文件系统。Magenta Studio具有简单易用的界面,提供多种功能和优势。该产品的定位是为音乐创作者和音乐爱好者提供创造和探索音乐的工具。
生成4分钟的音乐作品,结合多种音乐风格和乐器
MuseNet是一个深度神经网络模型,可以生成4分钟的音乐作品,使用10种不同的乐器,并且可以结合多种音乐风格,从乡村到莫扎特再到披头士。MuseNet通过学习预测数十万个MIDI文件中的下一个音符,发现了和声、节奏和风格的模式。该模型采用了与GPT-2相同的通用无监督学习技术,可以预测音频或文本序列中的下一个标记。
Inductive Moment Matching 是一种新型的生成模型,用于高质量图像生成。
Inductive Moment Matching (IMM) 是一种先进的生成模型技术,主要用于高质量图像生成。该技术通过创新的归纳矩匹配方法,显著提高了生成图像的质量和多样性。其主要优点包括高效性、灵活性以及对复杂数据分布的强大建模能力。IMM 由 Luma AI 和斯坦福大学的研究团队开发,旨在推动生成模型领域的发展,为图像生成、数据增强和创意设计等应用提供强大的技术支持。该项目开源了代码和预训练模型,方便研究人员和开发者快速上手和应用。
通过多实例扩散模型将单张图像生成高保真度的3D场景。
MIDI是一种创新的图像到3D场景生成技术,它利用多实例扩散模型,能够从单张图像中直接生成具有准确空间关系的多个3D实例。该技术的核心在于其多实例注意力机制,能够有效捕捉物体间的交互和空间一致性,无需复杂的多步骤处理。MIDI在图像到场景生成领域表现出色,适用于合成数据、真实场景数据以及由文本到图像扩散模型生成的风格化场景图像。其主要优点包括高效性、高保真度和强大的泛化能力。
NotaGen 是一个用于符号音乐生成的模型,采用大语言模型训练范式,专注于生成高质量古典乐谱。
NotaGen 是一款创新的符号音乐生成模型,通过预训练、微调和强化学习三个阶段提升音乐生成质量。它利用大语言模型技术,能够生成高质量的古典乐谱,为音乐创作带来新的可能性。该模型的主要优点包括高效生成、风格多样和高质量输出。它适用于音乐创作、教育和研究等领域,具有广泛的应用前景。
通过去噪生成模型进行空间推理,解决复杂分布下的视觉任务。
SRM是一种基于去噪生成模型的空间推理框架,用于处理连续变量集合的推理任务。它通过为每个未观测变量分配独立的噪声水平,逐步推断出这些变量的连续表示。该技术在处理复杂分布时表现出色,能够有效减少生成过程中的幻觉现象。SRM首次证明了去噪网络可以预测生成顺序,从而显著提高了特定推理任务的准确性。该模型由德国马普信息研究所开发,旨在推动空间推理和生成模型的研究。
DiffRhythm 是一种基于潜在扩散模型的端到端全曲生成技术,可在短时间内生成包含人声和伴奏的完整歌曲。
DiffRhythm 是一种创新的音乐生成模型,利用潜在扩散技术实现了快速且高质量的全曲生成。该技术突破了传统音乐生成方法的限制,无需复杂的多阶段架构和繁琐的数据准备,仅需歌词和风格提示即可在短时间内生成长达 4 分 45 秒的完整歌曲。其非自回归结构确保了快速的推理速度,极大地提升了音乐创作的效率和可扩展性。该模型由西北工业大学音频、语音和语言处理小组(ASLP@NPU)和香港中文大学(深圳)大数据研究院共同开发,旨在为音乐创作提供一种简单、高效且富有创造力的解决方案。
根据飞行路径创建个性化Spotify歌单,涵盖飞行经过地区的音乐。
Hype My Flight 是一个创意音乐服务,通过结合飞行路径和音乐,为用户提供独特的空中音乐体验。它利用地理位置信息和音乐数据库,生成与飞行轨迹相匹配的个性化歌单。这种创新方式不仅增加了飞行的乐趣,还让用户能够体验到不同地区的音乐文化。产品目前以网站形式提供服务,适合喜欢音乐和旅行的用户。其主要优点是个性化和趣味性,能够为用户提供独特的音乐体验。
BioEmu 是一个用于可扩展模拟蛋白质平衡系综的生成式深度学习模型。
BioEmu 是微软开发的一种深度学习模型,用于模拟蛋白质的平衡系综。该技术通过生成式深度学习方法,能够高效地生成蛋白质的结构样本,帮助研究人员更好地理解蛋白质的动态行为和结构多样性。该模型的主要优点在于其可扩展性和高效性,能够处理复杂的生物分子系统。它适用于生物化学、结构生物学和药物设计等领域的研究,为科学家提供了一种强大的工具来探索蛋白质的动态特性。
基于 PyTorch 的音乐、歌曲和音频生成工具包,支持高质量音频生成
InspireMusic 是一个专注于音乐、歌曲和音频生成的 AIGC 工具包和模型框架,采用 PyTorch 开发。它通过音频标记化和解码过程,结合自回归 Transformer 和条件流匹配模型,实现高质量音乐生成。该工具包支持文本提示、音乐风格、结构等多种条件控制,能够生成 24kHz 和 48kHz 的高质量音频,并支持长音频生成。此外,它还提供了方便的微调和推理脚本,方便用户根据需求调整模型。InspireMusic 的开源旨在赋能普通用户通过音乐创作提升研究中的音效表现。
YuE是一个开源的音乐生成模型,能够将歌词转化为完整的歌曲。
YuE是一个开创性的开源基础模型系列,专为音乐生成设计,能够将歌词转化为完整的歌曲。它能够生成包含吸引人的主唱和配套伴奏的完整歌曲,支持多种音乐风格。该模型基于深度学习技术,具有强大的生成能力和灵活性,能够为音乐创作者提供强大的工具支持。其开源特性也使得研究人员和开发者可以在此基础上进行进一步的研究和开发。
YuE 是一个专注于全曲生成的开源音乐基础模型,能够根据歌词生成完整的音乐作品。
YuE 是由香港科技大学和多模态艺术投影团队开发的开源音乐生成模型。它能够根据给定的歌词生成长达 5 分钟的完整歌曲,包括人声和伴奏部分。该模型通过多种技术创新,如语义增强音频标记器、双标记技术和歌词链式思考等,解决了歌词到歌曲生成的复杂问题。YuE 的主要优点是能够生成高质量的音乐作品,并且支持多种语言和音乐风格,具有很强的可扩展性和可控性。该模型目前免费开源,旨在推动音乐生成技术的发展。
利用尖端AI技术,快速生成任何流派的原创音乐。
AI音乐生成器是一个基于人工智能的在线平台,能够快速生成原创音乐。它利用复杂的机器学习模型和神经网络技术,分析数百万首歌曲的模式和结构,生成高质量的旋律、和声和人声。该产品的主要优点是能够快速实现音乐创作,支持多种流派和风格的定制,并提供灵活的生成选项。它适合音乐创作者、内容制作者和企业用户,能够帮助他们节省创作时间,激发灵感,并生成符合特定需求的音乐。产品提供免费试用和多种付费计划,满足不同用户的需求。
一个在线工具,帮助用户创建类似Charli XCX专辑封面风格的图像。
Brat Generator是一个以Charli XCX的专辑封面风格为灵感的在线图像生成工具。它允许用户通过输入文本和选择背景颜色,快速生成具有个性化的专辑封面风格图像。该工具的主要优点是操作简单、快速生成图像,并且可以自定义字体风格和颜色。它适合那些希望在社交媒体上分享个性化图像的用户,尤其是音乐爱好者和创意内容创作者。目前该工具是免费的,旨在为用户提供一种轻松创建独特图像的方式。
EurusPRM-Stage2是一个基于隐式过程奖励的强化学习模型,用于提升生成模型的推理能力。
EurusPRM-Stage2是一个先进的强化学习模型,通过隐式过程奖励来优化生成模型的推理过程。该模型利用因果语言模型的对数似然比来计算过程奖励,从而在不增加额外标注成本的情况下提升模型的推理能力。其主要优点在于能够在仅使用响应级标签的情况下,隐式地学习到过程奖励,从而提高生成模型的准确性和可靠性。该模型在数学问题解答等任务中表现出色,适用于需要复杂推理和决策的场景。
EurusPRM-Stage1是一个基于隐式过程奖励的强化学习模型,用于提升生成模型的推理能力。
EurusPRM-Stage1是PRIME-RL项目的一部分,旨在通过隐式过程奖励来增强生成模型的推理能力。该模型利用隐式过程奖励机制,无需额外标注过程标签,即可在推理过程中获得过程奖励。其主要优点是能够有效地提升生成模型在复杂任务中的表现,同时降低了标注成本。该模型适用于需要复杂推理和生成能力的场景,如数学问题解答、自然语言生成等。
一个用于信息检索和生成的灵活高性能框架
FlexRAG是一个用于检索增强生成(RAG)任务的灵活且高性能的框架。它支持多模态数据、无缝配置管理和开箱即用的性能,适用于研究和原型开发。该框架使用Python编写,具有轻量级和高性能的特点,能够显著提高RAG工作流的速度和减少延迟。其主要优点包括支持多种数据类型、统一的配置管理以及易于集成和扩展。
轻松集成先进AI接口,赋能项目。
API.box是一个提供先进AI接口的平台,旨在帮助开发者快速集成AI功能到他们的项目中。它提供全面的API文档和详细的调用日志,确保高效开发和系统性能稳定。API.box具备企业级安全性和强大可扩展性,支持高并发需求,同时提供免费试用和商业用途的输出许可,是开发者和企业的理想选择。
首个说唱音乐生成数据集
RapBank是一个专注于说唱音乐的数据集,它从YouTube收集了大量说唱歌曲,并提供了一个精心设计的数据预处理流程。这个数据集对于音乐生成领域具有重要意义,因为它提供了大量的说唱音乐内容,可以用于训练和测试音乐生成模型。RapBank数据集包含94,164首歌曲链接,成功下载了92,371首歌曲,总时长达到5,586小时,覆盖84种不同的语言,其中英语歌曲的总时长最高,占总时长的大约三分之二。
免费AI音乐生成器,快速创作高质量音乐。
SunoAiFree是一个前沿的AI音乐生成平台,专注于音乐生成和文本到音乐的转换。它提供免费的AI音乐生成服务,使用户能够快速创作出符合行业标准的高质量音乐曲目。SunoAiFree的技术先进,支持多种语言输入,能够理解并生成相应的音乐,具有快速的音乐生成速度和高质量的输出,满足不同用户的需求。
Spotify Wrapped的终极吐槽体验
RoastMyWrapped是一个基于Spotify Wrapped数据的趣味网站,它通过分析用户的音乐收听习惯,生成个性化的吐槽文本,让用户以幽默的方式分享自己的音乐品味。这个产品结合了音乐数据分析和社交媒体互动,为用户提供了一个新颖的娱乐方式,同时也展示了数据分析在日常生活中的趣味性应用。产品背景信息显示,它是由Sprites.ai创建的,旨在通过AI技术增强用户体验。
使用AI技术创作个性化音乐
免费AI歌曲生成器是一个在线工具,使用人工智能技术根据用户输入创作个性化歌曲。它结合旋律、和声和节奏,创造完整的歌曲。产品背景信息显示,该工具受到全球超过25,000名音乐家、内容创作者和音乐爱好者的信任。它提供免费、无需订阅的音乐创作服务,支持多种音乐风格,并允许用户商业使用生成的歌曲。
快速为视频添加自定义音乐和旁白
Aimi Sync是一个在线应用,允许用户轻松地将定制化、生成性音乐同步到视频中。音乐100%版权清晰且免版税。产品的主要优点包括自动化音乐配乐、创意控制、多样化的音乐类型和多种语言及声音的旁白生成,使得内容能够触及更广泛的受众。Aimi Sync的背景信息显示,它旨在简化视频制作流程,提高效率,同时确保音乐和旁白的版权问题得到妥善处理。产品目前提供免费试用。
高保真文本引导的音乐生成与编辑模型
MelodyFlow是一个基于文本控制的高保真音乐生成和编辑模型,它使用连续潜在表示序列,避免了离散表示的信息丢失问题。该模型基于扩散变换器架构,经过流匹配目标训练,能够生成和编辑多样化的高质量立体声样本,且具有文本描述的简单性。MelodyFlow还探索了一种新的正则化潜在反转方法,用于零样本测试时的文本引导编辑,并展示了其在多种音乐编辑提示中的优越性能。该模型在客观和主观指标上进行了评估,证明了其在标准文本到音乐基准测试中的质量与效率上与评估基线相当,并且在音乐编辑方面超越了以往的最先进技术。
© 2025 AIbase 备案号:闽ICP备08105208号-14