需求人群:
"目标受众包括计算机视觉研究人员、视频编辑人员、内容创作者、自动驾驶汽车开发人员以及需要进行图像和视频分析的科学和医学研究人员。SAM 2的实时分割能力和零样本泛化特性使其成为这些用户的理想选择,因为它可以显著提高工作效率并开启新的应用场景。"
使用场景示例:
在社交媒体上,使用SAM 2为视频添加特殊效果,如背景替换或对象高亮。
在医学领域,利用SAM 2分割细胞图像,辅助进行疾病诊断。
在自动驾驶汽车中,使用SAM 2进行实时道路对象分割,提高导航精度。
产品特色:
支持视频和图像的实时对象分割。
实现了零样本泛化,无需定制适配即可应用于未见内容。
共享了SA-V数据集,包含51,000个真实世界视频和超过600,000个masklets。
可用于创建新的视频效果和解锁新的创意应用。
可以辅助快速注释工具,以构建更好的计算机视觉系统。
设计有记忆机制,包括记忆编码器、记忆库和记忆注意力模块。
采用流式架构,支持任意长视频的实时处理。
使用教程:
下载SAM 2模型和权重。
获取并熟悉SA-V数据集,了解其结构和内容。
尝试基于Web的演示,体验SAM 2在视频和图像分割中的实际效果。
根据特定应用场景,对SAM 2进行定制化配置和优化。
利用SAM 2的输出与生成视频模型结合,创造新的视频效果。
在科学或医学研究中,使用SAM 2来跟踪和分析动态的生物样本。
参与社区讨论,获取反馈,并与其他研究者和开发者合作,共同推动SAM 2的发展和应用。
浏览量:35
最新流量情况
月访问量
2429.22k
平均访问时长
00:01:38
每次访问页数
1.79
跳出率
63.07%
流量来源
直接访问
32.05%
自然搜索
52.00%
邮件
0.06%
外链引荐
11.21%
社交媒体
4.49%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
3.09%
中国
3.97%
英国
3.87%
印度
8.01%
美国
33.46%
下一代视频和图像实时对象分割模型。
Meta Segment Anything Model 2 (SAM 2)是Meta公司开发的下一代模型,用于视频和图像中的实时、可提示的对象分割。它实现了最先进的性能,并且支持零样本泛化,即无需定制适配即可应用于之前未见过的视觉内容。SAM 2的发布遵循开放科学的方法,代码和模型权重在Apache 2.0许可下共享,SA-V数据集也在CC BY 4.0许可下共享。
3D网格生成与语言模型的统一
LLaMA-Mesh是一项将大型语言模型(LLMs)预训练在文本上扩展到生成3D网格的能力的技术。这项技术利用了LLMs中已经嵌入的空间知识,并实现了对话式3D生成和网格理解。LLaMA-Mesh的主要优势在于它能够将3D网格的顶点坐标和面定义表示为纯文本,允许与LLMs直接集成而无需扩展词汇表。该技术的主要优点包括能够从文本提示生成3D网格、按需产生交错的文本和3D网格输出,以及理解和解释3D网格。LLaMA-Mesh在保持强大的文本生成性能的同时,实现了与从头开始训练的模型相当的网格生成质量。
业界领先的开源大型混合专家模型
Tencent-Hunyuan-Large(混元大模型)是由腾讯推出的业界领先的开源大型混合专家(MoE)模型,拥有3890亿总参数和520亿激活参数。该模型在自然语言处理、计算机视觉和科学任务等领域取得了显著进展,特别是在处理长上下文输入和提升长上下文任务处理能力方面表现出色。混元大模型的开源,旨在激发更多研究者的创新灵感,共同推动AI技术的进步和应用。
视频眼神校正API,让视频中的眼神看起来始终注视着摄像头。
Sieve Eye Contact Correction API 是一个为开发者设计的快速且高质量的视频眼神校正API。该技术通过重定向眼神,确保视频中的人物即使没有直接看向摄像头,也能模拟出与摄像头进行眼神交流的效果。它支持多种自定义选项来微调眼神重定向,保留了原始的眨眼和头部动作,并通过随机的“看向别处”功能来避免眼神呆板。此外,还提供了分屏视图和可视化选项,以便于调试和分析。该API主要面向视频制作者、在线教育提供者和任何需要提升视频交流质量的用户。定价为每分钟视频0.10美元。
专注于计算机视觉和机器学习领域的研究与创新的博客网站
Shangchen Zhou 是一位在计算机视觉和机器学习领域有着深厚研究背景的博士生,他的工作主要集中在视觉内容增强、编辑和生成AI(2D和3D)上。他的研究成果广泛应用于图像和视频的超分辨率、去模糊、低光照增强等领域,为提升视觉内容的质量和用户体验做出了重要贡献。
利用多指令视频到音频合成技术
Draw an Audio是一个创新的视频到音频合成技术,它通过多指令控制,能够根据视频内容生成高质量的同步音频。这项技术不仅提升了音频生成的可控性和灵活性,还能够在多阶段产生混合音频,展现出更广泛的实际应用潜力。
大型多模态模型,处理多图像、视频和3D数据。
LLaVA-NeXT是一个大型多模态模型,它通过统一的交错数据格式处理多图像、视频、3D和单图像数据,展示了在不同视觉数据模态上的联合训练能力。该模型在多图像基准测试中取得了领先的结果,并在不同场景中通过适当的数据混合提高了之前单独任务的性能或保持了性能。
多模态人工智能模型,辅助病理学研究和教育。
PathChat 2是Modella AI最新推出的多模态生成性人工智能模型,专为病理学家、学员和研究人员设计,能够对病理图像和文本进行推理,作为研究和教育的辅助工具。与前一代模型PathChat 1相比,PathChat 2在鉴别诊断、形态描述、指令遵循以及执行多样化任务(如开放式问题回答和报告总结)方面有显著的性能提升。
革命性AI技术,多模态智能互动
GPT-4o是OpenAI的最新创新,代表了人工智能技术的前沿。它通过真正的多模态方法扩展了GPT-4的功能,包括文本、视觉和音频。GPT-4o以其快速、成本效益和普遍可访问性,革命性地改变了我们与AI技术的互动。它在文本理解、图像分析和语音识别方面表现出色,提供流畅直观的AI互动,适合从学术研究到特定行业需求的多种应用。
4D重建模型,快速生成动画对象
L4GM是一个4D大型重建模型,能够从单视图视频输入中快速生成动画对象。它采用了一种新颖的数据集,包含多视图视频,这些视频展示了Objaverse中渲染的动画对象。该数据集包含44K种不同的对象和110K个动画,从48个视角渲染,生成了12M个视频,总共包含300M帧。L4GM基于预训练的3D大型重建模型LGM构建,该模型能够从多视图图像输入中输出3D高斯椭球。L4GM输出每帧的3D高斯Splatting表示,然后将其上采样到更高的帧率以实现时间平滑。此外,L4GM还添加了时间自注意力层,以帮助学习时间上的一致性,并使用每个时间步的多视图渲染损失来训练模型。
提供关于人工智能的最佳资源,学习机器学习、数据科学、自然语言处理等。
AI Online Course是一个互动学习平台,提供清晰简明的人工智能介绍,使复杂的概念易于理解。它涵盖机器学习、深度学习、计算机视觉、自动驾驶、聊天机器人等方面的知识,并强调实际应用和技术优势。
基于Java的全能视觉智能识别项目
JavaVision是一个基于Java开发的全能视觉智能识别项目,它不仅实现了PaddleOCR-V4、YoloV8物体识别、人脸识别、以图搜图等核心功能,还可以轻松扩展到其他领域,如语音识别、动物识别、安防检查等。项目特点包括使用SpringBoot框架、多功能性、高性能、可靠稳定、易于集成和灵活可拓展。JavaVision旨在为Java开发者提供一个全面的视觉智能识别解决方案,让他们能够以熟悉且喜爱的编程语言构建出先进、可靠且易于集成的AI应用。
一种通过计数事实数据集和自举监督实现真实物体删除和插入的方法
ObjectDrop是一种监督方法,旨在实现照片级真实的物体删除和插入。它利用了一个计数事实数据集和自助监督技术。主要功能是可以从图像中移除物体及其对场景产生的影响(如遮挡、阴影和反射),也能够将物体以极其逼真的方式插入图像。它通过在一个小型的专门捕获的数据集上微调扩散模型来实现物体删除,而对于物体插入,它采用自助监督方式利用删除模型合成大规模的计数事实数据集,在此数据集上训练后再微调到真实数据集,从而获得高质量的插入模型。相比之前的方法,ObjectDrop在物体删除和插入的真实性上有了显著提升。
通用视觉-语义物体检测,无需任务特定调优
T-Rex2是一种范式突破的物体检测技术,能够识别从日常到深奥的各种物体,无需任务特定调优或大量训练数据集。它将视觉和文本提示相结合,赋予其强大的零射能力,可广泛应用于各种场景的物体检测任务。T-Rex2综合了四个组件:图像编码器、视觉提示编码器、文本提示编码器和框解码器。它遵循DETR的端到端设计原理,涵盖多种应用场景。T-Rex2在COCO、LVIS、ODinW和Roboflow100等四个学术基准测试中取得了最优秀的表现。
用于精细文本控制图像生成的空间对齐文本注入
FineControlNet是一个基于Pytorch的官方实现,用于生成可通过空间对齐的文本控制输入(如2D人体姿势)和实例特定的文本描述来控制图像实例的形状和纹理的图像。它可以使用从简单的线条画作为空间输入,到复杂的人体姿势。FineControlNet确保了实例和环境之间自然的交互和视觉协调,同时获得了Stable Diffusion的质量和泛化能力,但具有更多的控制能力。
GoEnhance AI是一款基于AI的图文增强工具
GoEnhance AI是一款基于人工智能的图像和视频增强工具。它可以实现视频到视频、图像增强和超分辨率scaling等功能。GoEnhance AI采用了最先进的深度学习算法,可以增强和上采样图像到极致的细节和高分辨率。它简单易用,功能强大,是创作者、设计师等用户释放创意的绝佳工具。
一个统一的用于图像和视频对象分割的模型
UniRef是一个统一的用于图像和视频参考对象分割的模型。它支持语义参考图像分割(RIS)、少样本分割(FSS)、语义参考视频对象分割(RVOS)和视频对象分割(VOS)等多种任务。UniRef的核心是UniFusion模块,它可以高效地将各种参考信息注入到基础网络中。 UniRef可以作为SAM等基础模型的插件组件使用。UniRef提供了在多个基准数据集上训练好的模型,同时也开源了代码以供研究使用。
企业AI SaaS平台
ALFI是一款由人工智能驱动的企业SaaS平台,采用计算机视觉、机器学习、深度学习和边缘计算技术。它提供了广告定向、实时观众分析和个性化内容交付等功能。ALFI的独特网络将人工智能屏幕安装在Uber和Lyft等共乘服务中,实现数字户外广告的精准定向和个性化交付。它通过计算机视觉技术实时匹配受众与相关广告,并在符合隐私规范的过程中进行内容投放。ALFI的目标是为品牌提供更精准的广告投放,为企业提供实时观众分析和定制化内容交付。
AI与计算机视觉结合的摔跤耐力挑战
Wrestling Endurance Challenge是一个结合了人工智能和计算机视觉的摔跤耐力挑战应用。该应用通过AI分配任务,利用计算机视觉检测用户的持续时间。用户可通过扬声器或耳机接收指令,以参与耐力挑战。应用使用持续的机器学习在云端进行计算,并保证隐私安全,不会发送视频,仅导出关节坐标和轨迹数据。
智能图像与视频分析
Visionati是一款完整的视觉分析工具包,提供全面的图像和视频描述、标签和内容过滤功能。与Google Vision、Amazon Rekognition、OpenAI等人工智能领域的领导者进行集成,保证了卓越的准确性和深度。这些功能可以将复杂的视觉内容转化为清晰、可行的洞察,用于数字营销、故事叙述和数据分析等领域。
通过人工智能提供参与度分析平台
AttentionKart是一个利用人工智能提供参与度洞察的平台。它使用计算机视觉技术如面部识别、表情识别、眼球追踪等,帮助用户分析参与度和互动,获得用户行为深入洞察。平台可以离线分析录像,也可以在线整合第三方应用。主要功能包括参与度分析、精准用户画像、互动优化等。适用于教育机构的在线课程、企业的会议演示、销售电话等场景。
提供创新的3D家具可视化软件,提升客户的购物体验。
Zolak 3D家具可视化软件是一款创新的产品,利用计算机视觉和人工智能技术,帮助家具零售商实现产品的可视化展示和个性化内容展示。通过使用我们的产品,您可以提高销售额,减少退货率,提升客户满意度。我们的软件可以让客户在虚拟环境中浏览家具,并提供个性化的购物体验。
无人商店,无需排队
Amazon Go是一种无人商店的概念,利用人工智能和计算机视觉技术,消费者可以在无需排队的情况下购买商品。该商店通过追踪顾客的购买行为和商品拿取,自动扣除顾客的账户,并提供电子收据。Amazon Go的优势在于提供了便利的购物体验,节省了顾客的时间,并提供了更加智能和高效的零售解决方案。
云端计算机视觉软件平台
LandingLens是一个云端计算机视觉软件平台,通过直观的界面和自然的提示交互,使您能够在几分钟内创建自定义的计算机视觉项目。其数据导向的人工智能技术确保即使在小型数据集的情况下,模型也能正常工作。LandingLens提供灵活的部署选项,包括云端和边缘设备,使其易于集成到现有环境中。无论是单个生产线还是全球运营,LandingLens都能轻松扩展项目。
无需代码或训练数据即可建立强大的计算机视觉模型
DirectAI是一个基于大型语言模型和零样本学习的平台,可以根据您的描述即时构建适合您需求的模型,无需训练数据。您可以在几秒钟内部署和迭代模型,省去了组装训练数据、标记数据、训练模型和微调模型的时间和费用。DirectAI在纽约市总部,并获得了风投支持,正在改变人们在现实世界中使用人工智能的方式。
AI 易用的全能产品构建平台
Eden AI 提供一站式 API 接入,涵盖多种 AI 技术,包括生成式 AI、文本分析、图像分析、视频分析、OCR / 文档解析、语音转录等。产品具有易用性、多样性和高效性的优势。详细定价和定位信息请访问官方网站。
视觉语言模型,能够进行逐步推理
LLaVA-o1是北京大学元组团队开发的一个视觉语言模型,它能够进行自发的、系统的推理,类似于GPT-o1。该模型在六个具有挑战性的多模态基准测试中超越了其他模型,包括Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-Vision-Instruct。LLaVA-o1通过逐步推理解决问题,展示了其在视觉语言模型中的独特优势。
基于Segment-Anything-2和Segment-Anything-1的自动全视频分割工具
AutoSeg-SAM2是一个基于Segment-Anything-2(SAM2)和Segment-Anything-1(SAM1)的自动全视频分割工具,它能够对视频中的每个对象进行追踪,并检测可能的新对象。该工具的重要性在于它能够提供静态分割结果,并利用SAM2对这些结果进行追踪,这对于视频内容分析、对象识别和视频编辑等领域具有重要意义。产品背景信息显示,它是由zrporz开发的,并且是基于Facebook Research的SAM2和zrporz自己的SAM1。价格方面,由于这是一个开源项目,因此它是免费的。
© 2024 AIbase 备案号:闽ICP备08105208号-14