需求人群:
"目标受众为AI研究者、图像生成领域的开发者以及对文本到图像生成技术感兴趣的技术爱好者。Regional-Prompting-FLUX以其无需训练、高兼容性和高效推理速度的特点,特别适合需要快速实现和迭代图像生成项目的用户。"
使用场景示例:
生成具有特定背景和前景的图像,如海滩上的古老女性形象。
创建具有特定风格和元素的图像,例如卡通风格的UFO悬浮在城市上空。
利用ControlNet生成具有特定姿态和深度条件的赛车图像。
产品特色:
• 细粒度的区域控制:通过区域掩码和特定提示实现对生成图像特定区域的精准控制。
• 训练无关:无需训练即可实现文本到图像的生成,降低了技术应用的门槛。
• 与LoRA和ControlNet兼容:增强了模型的灵活性和应用范围。
• 高效的推理速度:比基于RPG的实现更快,同时占用更少的GPU内存。
• 多样的示例和配置:提供了丰富的示例和配置选项,方便用户根据需求调整生成效果。
• 技术报告和代码开源:便于研究者和开发者深入了解和二次开发。
使用教程:
1. 安装必要的依赖,包括diffusers库和其他Python包。
2. 克隆Regional-Prompting-FLUX仓库,并替换diffusers库中的相关文件。
3. 根据示例代码,设置基础提示、区域提示和掩码。
4. 调整图像大小、种子值和其他生成参数以满足特定需求。
5. 运行代码生成图像,并保存输出结果。
6. 根据需要调整区域控制因子设置,如掩码注入步骤和注入间隔,以优化生成效果。
浏览量:3
最新流量情况
月访问量
4.89m
平均访问时长
00:06:37
每次访问页数
5.70
跳出率
37.28%
流量来源
直接访问
52.59%
自然搜索
32.74%
邮件
0.05%
外链引荐
12.33%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.61%
德国
3.57%
印度
9.68%
俄罗斯
4.81%
美国
18.94%
训练无关的区域提示扩散变换器模型
Regional-Prompting-FLUX是一种训练无关的区域提示扩散变换器模型,它能够在无需训练的情况下,为扩散变换器(如FLUX)提供细粒度的组合文本到图像生成能力。该模型不仅效果显著,而且与LoRA和ControlNet高度兼容,能够在保持高速度的同时减少GPU内存的使用。
基于文本生成高质量图像的AI模型
SD3.5-LoRA-Linear-Red-Light是一个基于文本到图像生成的AI模型,通过使用LoRA(Low-Rank Adaptation)技术,该模型能够根据用户提供的文本提示生成高质量的图像。这种技术的重要性在于它能够以较低的计算成本实现模型的微调,同时保持生成图像的多样性和质量。该模型基于Stable Diffusion 3.5 Large模型,并在此基础上进行了优化和调整,以适应特定的图像生成需求。
基于人工智能的图像生成模型
Stable Diffusion 3.5 Medium 是由 Stability AI 提供的一款基于人工智能的图像生成模型,它能够根据文本描述生成高质量的图像。这项技术的重要性在于它能够极大地推动创意产业的发展,如游戏设计、广告、艺术创作等领域。Stable Diffusion 3.5 Medium 以其高效的图像生成能力、易用性和较低的资源消耗而受到用户的青睐。目前,该模型在 Hugging Face 平台上以免费试用的形式提供给用户。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
一键式创意图像生成模型
FLUX.1-dev-LoRA-One-Click-Creative-Template 是一个基于 LoRA 训练的图像生成模型,由 Shakker-Labs 提供。该模型专注于创意照片生成,能够将用户的文本提示转化为具有创意性的图像。模型使用了先进的文本到图像的生成技术,特别适合需要快速生成高质量图像的用户。它是基于 Hugging Face 平台,可以方便地进行部署和使用。模型的非商业使用是免费的,但商业使用需要遵守相应的许可协议。
AI模型测试与文本到图像提示集合平台
Prompt Llama是一个专注于文本到图像生成的AI模型测试平台,它允许用户收集高质量的文本提示,并测试不同模型在同一提示下的表现。该平台支持多种AI模型,包括但不限于midjourney、DALL·E 3、Firefly等,是AI图像生成领域研究者和爱好者的宝贵资源。
一种先进的文本到图像的生成模型。
FLUX.1-dev-Controlnet-Union-alpha是一个文本到图像的生成模型,属于Diffusers系列,使用ControlNet技术进行控制。目前发布的是alpha版本,尚未完全训练完成,但已经展示了其代码的有效性。该模型旨在通过开源社区的快速成长,推动Flux生态系统的发展。尽管完全训练的Union模型可能在特定领域如姿势控制上不如专业模型,但随着训练的进展,其性能将不断提升。
深度学习模型训练脚本集
x-flux是由XLabs AI团队发布的深度学习模型训练脚本集,包括LoRA和ControlNet模型。这些模型使用DeepSpeed进行训练,支持512x512和1024x1024图片尺寸,并且提供了相应的训练配置文件和示例。x-flux模型训练旨在提高图像生成的质量和效率,对于AI图像生成领域具有重要意义。
基于FLUX.1-dev模型的LoRA文本到图像生成技术。
flux-RealismLora是由XLabs AI团队发布的基于FLUX.1-dev模型的LoRA技术,用于生成逼真的图像。该技术通过文本提示生成图像,支持多种风格,如动画风格、幻想风格和自然电影风格。XLabs AI提供了训练脚本和配置文件,以方便用户进行模型训练和使用。
12亿参数的图像生成模型
FLUX.1 [schnell] 是一个具有12亿参数的修正流变换器,能够从文本描述生成图像。它以其尖端的输出质量和竞争性的提示跟随能力而著称,与闭源替代品的性能相匹配。该模型使用潜在对抗性扩散蒸馏进行训练,能够在1到4步内生成高质量的图像。FLUX.1 [schnell] 在apache-2.0许可证下发布,可以用于个人、科学和商业目的。
AI内容生成研究组织
InstantX是一个专注于AI内容生成的独立研究组织,致力于文本到图像的生成技术。其研究项目包括风格保持的文本到图像生成(InstantStyle)和零样本身份保持生成(InstantID)。该组织通过GitHub社区进行项目更新和交流,推动AI在图像生成领域的应用和发展。
AI图像生成器
Stable Diffusion 是一个深度学习模型,可以从文本描述生成图像。它提供高质量的图像生成,可以根据简单的文本输入创建逼真的图像。它具有快速生成的优势,可以通过修复和扩展图像的大小来添加或替换图像的部分。Stable Diffusion XL是该模型的最新版本,使用更大的UNet骨干网络生成更高质量的图像。您可以免费在Stable Diffusion在线使用这个AI图像生成器。
AI图像生成工具
SOREAL.AI Studio是一款基于AI技术的图像生成工具。它可以生成逼真的图像,帮助用户快速创建各种视觉元素。该工具具有稳定的Diffusion 1.5算法和Dreambooth Studio,可以进行模型的微调和训练。SOREAL.AI Studio支持文本到图像的生成,提供丰富的功能和使用场景,并适用于个人和商业用户。价格合理且定位广泛。
革命性的AI模型,排名第一的人工智能分析工具。
Red Panda AI,也称为Recraft V3,是一个在人工智能分析领域排名第一的革命性AI模型。它超越了FLUX1.1、Midjourney和OpenAI等其他模型,在设计理解和视觉输出质量方面表现出色。Red Panda AI以其设计为中心的架构,提供了无与伦比的设计原则理解、视觉层次和构图能力。它能够智能地适应不同平台和用例,保持一致的品牌身份。产品的主要优点包括设计语言理解、风格一致性控制、上下文感知、专业设计质量、快速迭代和多格式掌握。
一种用于扩散变换器的上下文LoRA微调技术
In-Context LoRA是一种用于扩散变换器(DiTs)的微调技术,它通过结合图像而非仅仅文本,实现了在保持任务无关性的同时,对特定任务进行微调。这种技术的主要优点是能够在小数据集上进行有效的微调,而不需要对原始DiT模型进行任何修改,只需改变训练数据即可。In-Context LoRA通过联合描述多张图像并应用任务特定的LoRA微调,生成高保真度的图像集合,更好地符合提示要求。该技术对于图像生成领域具有重要意义,因为它提供了一种强大的工具,可以在不牺牲任务无关性的前提下,为特定任务生成高质量的图像。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
强大的图像生成模型
Stable Diffusion 3.5是Stability AI推出的一款图像生成模型,具有多种变体,包括Stable Diffusion 3.5 Large和Stable Diffusion 3.5 Large Turbo。这些模型可高度定制,能在消费级硬件上运行,并且根据Stability AI社区许可协议,可以免费用于商业和非商业用途。该模型的发布体现了Stability AI致力于让视觉媒体变革的工具更易于获取、更前沿、更自由的使命。
开源的去蒸馏FLUX模型
LibreFLUX是一个基于Apache 2.0许可的开源版本,提供了完整的T5上下文长度,使用注意力掩码,恢复了分类器自由引导,并去除了大部分FLUX美学微调/DPO。这意味着它比基础FLUX更不美观,但有潜力更容易地微调到任何新的分布。LibreFLUX的开发秉承开源软件的核心原则,即使用困难,比专有解决方案更慢、更笨拙,并且审美停留在21世纪初。
基于FLUX.1-dev的文本到图像生成模型
FLUX.1-dev-LoRA-Text-Poster是由Shakker-Labs开发的文本到图像生成模型,专门用于艺术文本海报的生成。该模型利用LoRA技术,通过文本提示来生成图像,为用户提供了一种创新的方式来创作艺术作品。模型的训练由版权用户cooooool完成,并在Hugging Face平台上共享,以促进社区的交流和发展。模型遵循非商业用途的flux-1-dev许可协议。
利用AI提升媒体处理和数字资产管理效率
ImageKit AI是一个结合了人工智能和生成式AI的媒体处理和数字资产管理平台。它通过AI技术,如图像扩展、智能裁剪、背景移除、添加阴影、通过文本提示生成图像等,帮助用户提升媒体内容的质量和处理效率。ImageKit AI的背景是满足现代数字媒体管理的需求,它通过AI技术简化了图像处理流程,降低了成本,并提高了内容的个性化和质量。产品定位于为企业提供高效、智能的媒体内容管理解决方案。
文本到图像生成的自适应工作流
ComfyGen 是一个专注于文本到图像生成的自适应工作流系统,它通过学习用户提示来自动化并定制有效的工作流。这项技术的出现,标志着从使用单一模型到结合多个专业组件的复杂工作流的转变,旨在提高图像生成的质量。ComfyGen 背后的主要优点是能够根据用户的文本提示自动调整工作流,以生成更高质量的图像,这对于需要生成特定风格或主题图像的用户来说非常重要。
基于AI的动画图片生成平台
AnimeGen是一个利用先进AI模型将文本提示转化为动漫风格图片的在线工具。它通过复杂的算法和机器学习技术,为用户提供了一种简单快捷的方式来生成高质量的动漫图片,非常适合艺术家、内容创作者和动漫爱好者探索新的创作可能性。AnimeGen支持80多种语言,生成的图片公开显示并可被搜索引擎抓取,是一个多功能的创意工具。
生成融合宫崎骏风格和新海诚氛围的梦幻风景图
Flux Ghibsky Illustration 是一个基于文本生成图像的模型,它结合了宫崎骏动画工作室的奇幻细节和新海诚作品中的宁静天空,创造出迷人的场景。该模型特别适合创造梦幻般的视觉效果,用户可以通过特定的触发词来生成具有独特审美的图像。它是基于Hugging Face平台的开源项目,允许用户下载模型并在Replicate上运行。
基于FLUX.1-dev模型的8步蒸馏Lora,用于文本到图像生成。
FLUX.1-Turbo-Alpha是一个基于FLUX.1-dev模型的8步蒸馏Lora,由AlimamaCreative Team发布。该模型使用多头鉴别器来提高蒸馏质量,可以用于文本到图像(T2I)、修复控制网络等FLUX相关模型。推荐使用指导比例为3.5,Lora比例为1。该模型在1M开源和内部源图像上进行训练,采用对抗性训练提高质量,固定原始FLUX.1-dev变换器作为鉴别器主干,并在每层变换器上添加多头。
免费AI动漫生成器,轻松创造独特的动漫风格图片
Free AI Anime Generator是一个基于人工智能技术的在线平台,它允许用户通过简单的点击操作生成高质量的动漫风格图片。这个平台利用先进的AI算法,使得即使是非专业人士也能轻松创造出独特的艺术作品。它不仅为动漫爱好者提供了一个实现创意的平台,也为艺术家和设计师提供了一个探索新创意的工具。该平台完全免费,易于使用,是动漫艺术创作领域的一次创新。
© 2024 AIbase 备案号:闽ICP备08105208号-14