需求人群:
"目标受众主要是动漫爱好者、插画师以及需要快速生成动漫风格图像的设计师。他们可以利用Phantasma Anime模型快速创作个性化的动漫插画,无论是用于个人收藏、商业项目还是社交媒体分享。"
使用场景示例:
动漫爱好者使用Phantasma Anime模型生成自己喜爱的角色插画。
插画师利用该模型为小说或漫画创作独特的封面艺术。
设计师使用Phantasma Anime模型为游戏或动画项目快速生成概念图。
产品特色:
文本到图像的转换能力,能够理解并生成与描述相符的动漫插画。
支持多种幻想主题,如冒险者、神秘武器、狐狸精灵等。
模型强调细节和特效,提供具有视觉冲击力的图像输出。
提供灵活的定制选项,用户可以根据需要调整生成的插画风格。
模型文件以Safetensors格式提供,方便用户下载和使用。
模型具有较好的灵活性,可以适应不同的幻想主题创作需求。
使用教程:
1. 访问Phantasma Anime模型的网页链接。
2. 阅读模型描述,了解其功能和特点。
3. 点击'Download model'下载模型文件。
4. 根据提供的文档和指南,设置模型运行环境。
5. 使用模型提供的接口输入文本描述,生成动漫插画。
6. 根据需要调整参数,优化生成的插画效果。
7. 将生成的插画用于个人或商业项目。
浏览量:65
最新流量情况
月访问量
29742.94k
平均访问时长
00:04:44
每次访问页数
5.85
跳出率
44.20%
流量来源
直接访问
50.45%
自然搜索
33.93%
邮件
0.03%
外链引荐
12.90%
社交媒体
2.67%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
21.55%
印度
7.98%
日本
2.93%
俄罗斯
5.29%
美国
16.06%
创建活泼的动漫风格插画
Phantasma Anime模型是一个专注于幻想主题的动漫风格插画生成工具,它通过文本到图像的转换技术,为用户提供具有特定效果细节的动漫插画。该模型在灵活性和幻想元素的表现上具有优势,适合需要快速生成动漫风格图像的用户。
国内优秀原创插画师聚集地
触站是一个为插画师、设计师和艺术爱好者提供作品展示、交流和学习的平台。它汇集了众多P站(pixiv)画师与认证画师的作品,包括动漫图片、动漫壁纸、插画、CG原画等。触站不仅为艺术家提供了一个展示自己作品的空间,也为爱好者提供了一个发现和学习优秀作品的场所。
专注于动漫风格的生成模型,呈现细腻的画面效果
AWPainting是一款基于Stable Diffusion的图像生成模型,专注于动漫风格的图像生成。相比于标准模型,AWPainting在光照和细节表现方面有着更出色的效果,画面更加细腻、有呼吸感,人物面部光照更加柔和自然。同时AWPainting也对Prompt指令的响应更加良好。无论是单纯的动漫风格图像生成,还是动画化真人照片等场景,AWPainting都能提供满意的输出效果。
基于稳定扩散生成高质量动漫风格图像的文本到图像模型
Animagine XL 3.1 是一款能够基于文本提示生成高质量动漫风格图像的文本到图像生成模型。它建立在稳定扩散 XL 的基础之上,专门针对动漫风格进行了优化。该模型具有更广泛的动漫角色知识、优化过的数据集和新的美学标签,从而提高了生成图像的质量和准确性。它旨在为动漫爱好者、艺术家和内容创作者提供有价值的资源。
一款用于生成无线条、扁平色彩风格图像和视频的LoRA模型,适用于动漫和设计领域。
Flat Color - Style是一款专为生成扁平色彩风格图像和视频设计的LoRA模型。它基于Wan Video模型训练,具有独特的无线条、低深度效果,适合用于动漫、插画和视频生成。该模型的主要优点是能够减少色彩渗出,增强黑色表现力,同时提供高质量的视觉效果。它适用于需要简洁、扁平化设计的场景,如动漫角色设计、插画创作和视频制作。该模型是免费提供给用户使用的,旨在帮助创作者快速实现具有现代感和简洁风格的视觉作品。
CogView4-6B 是一个强大的文本到图像生成模型,专注于高质量图像生成。
CogView4-6B 是由清华大学知识工程组开发的文本到图像生成模型。它基于深度学习技术,能够根据用户输入的文本描述生成高质量的图像。该模型在多个基准测试中表现优异,尤其是在中文文本生成图像方面具有显著优势。其主要优点包括高分辨率图像生成、支持多种语言输入以及高效的推理速度。该模型适用于创意设计、图像生成等领域,能够帮助用户快速将文字描述转化为视觉内容。
CogView4 是一个支持中文和英文的高分辨率文本到图像生成模型。
CogView4 是由清华大学开发的先进文本到图像生成模型,基于扩散模型技术,能够根据文本描述生成高质量图像。它支持中文和英文输入,并且可以生成高分辨率图像。CogView4 的主要优点是其强大的多语言支持和高质量的图像生成能力,适合需要高效生成图像的用户。该模型在 ECCV 2024 上展示,具有重要的研究和应用价值。
DiffSplat 是一个从文本提示和单视图图像生成 3D 高斯点云的生成框架。
DiffSplat 是一种创新的 3D 生成技术,能够从文本提示和单视图图像快速生成 3D 高斯点云。该技术通过利用大规模预训练的文本到图像扩散模型,实现了高效的 3D 内容生成。它解决了传统 3D 生成方法中数据集有限和无法有效利用 2D 预训练模型的问题,同时保持了 3D 一致性。DiffSplat 的主要优点包括高效的生成速度(1~2 秒内完成)、高质量的 3D 输出以及对多种输入条件的支持。该模型在学术研究和工业应用中具有广泛前景,尤其是在需要快速生成高质量 3D 模型的场景中。
Animagine XL 4.0 是一款专注于动漫风格的Stable Diffusion XL模型,专为生成高质量动漫图像而设计。
Animagine XL 4.0 是一款基于Stable Diffusion XL 1.0微调的动漫主题生成模型。它使用了840万张多样化的动漫风格图像进行训练,训练时长达到2650小时。该模型专注于通过文本提示生成和修改动漫主题图像,支持多种特殊标签,可控制图像生成的不同方面。其主要优点包括高质量的图像生成、丰富的动漫风格细节以及对特定角色和风格的精准还原。该模型由Cagliostro Research Lab开发,采用CreativeML Open RAIL++-M许可证,允许商业使用和修改。
基于Diffusion的文本到图像生成模型,专注于时尚模特摄影风格图像生成
Fashion-Hut-Modeling-LoRA是一个基于Diffusion技术的文本到图像生成模型,主要用于生成时尚模特的高质量图像。该模型通过特定的训练参数和数据集,能够根据文本提示生成具有特定风格和细节的时尚摄影图像。它在时尚设计、广告制作等领域具有重要应用价值,能够帮助设计师和广告商快速生成创意概念图。模型目前仍在训练阶段,可能存在一些生成效果不佳的情况,但已经展示了强大的潜力。该模型的训练数据集包含14张高分辨率图像,使用了AdamW优化器和constant学习率调度器等参数,训练过程注重图像的细节和质量。
一款基于Midjourney风格的文本到图像生成模型,专注于高分辨率和写实风格的图像创作。
Flux-Midjourney-Mix2-LoRA 是一款基于深度学习的文本到图像生成模型,旨在通过自然语言描述生成高质量的图像。该模型基于Diffusion架构,结合了LoRA技术,能够实现高效的微调和风格化图像生成。其主要优点包括高分辨率输出、多样化的风格支持以及对复杂场景的出色表现能力。该模型适用于需要高质量图像生成的用户,如设计师、艺术家和内容创作者,能够帮助他们快速实现创意构思。
NeuralSVG:从文本提示生成矢量图形的隐式表示方法。
NeuralSVG是一种用于从文本提示生成矢量图形的隐式神经表示方法。它受到神经辐射场(NeRFs)的启发,将整个场景编码到一个小的多层感知器(MLP)网络的权重中,并使用分数蒸馏采样(SDS)进行优化。该方法通过引入基于dropout的正则化技术,鼓励生成的SVG具有分层结构,使每个形状在整体场景中具有独立的意义。此外,其神经表示还提供了推理时控制的优势,允许用户根据提供的输入动态调整生成的SVG,如颜色、宽高比等,且只需一个学习到的表示。通过广泛的定性和定量评估,NeuralSVG在生成结构化和灵活的SVG方面优于现有方法。该模型由特拉维夫大学和MIT CSAIL的研究人员共同开发,目前代码尚未公开。
文本到图像扩散模型的美学质量提升工具
VMix是一种用于提升文本到图像扩散模型美学质量的技术,通过创新的条件控制方法——价值混合交叉注意力,系统性地增强图像的美学表现。VMix作为一个即插即用的美学适配器,能够在保持视觉概念通用性的同时提升生成图像的质量。VMix的关键洞见是通过设计一种优越的条件控制方法来增强现有扩散模型的美学表现,同时保持图像与文本的对齐。VMix足够灵活,可以应用于社区模型,以实现更好的视觉性能,无需重新训练。
无需训练的迭代框架,用于长篇故事可视化
Story-Adapter是一个无需训练的迭代框架,专为长篇故事可视化设计。它通过迭代范式和全局参考交叉注意力模块,优化图像生成过程,保持故事中语义的连贯性,同时减少计算成本。该技术的重要性在于它能够在长篇故事中生成高质量、细节丰富的图像,解决了传统文本到图像模型在长故事可视化中的挑战,如语义一致性和计算可行性。
自适应条件选择,提升文本到图像生成控制力
DynamicControl是一个用于提升文本到图像扩散模型控制力的框架。它通过动态组合多样的控制信号,支持自适应选择不同数量和类型的条件,以更可靠和详细地合成图像。该框架首先使用双循环控制器,利用预训练的条件生成模型和判别模型,为所有输入条件生成初始真实分数排序。然后,通过多模态大型语言模型(MLLM)构建高效条件评估器,优化条件排序。DynamicControl联合优化MLLM和扩散模型,利用MLLM的推理能力促进多条件文本到图像任务,最终排序的条件输入到并行多控制适配器,学习动态视觉条件的特征图并整合它们以调节ControlNet,增强对生成图像的控制。
用于文本到图像扩散模型的照明绘图工具
LuminaBrush是一个交互式工具,旨在绘制图像上的照明效果。该工具采用两阶段方法:一阶段将图像转换为“均匀照明”的外观,另一阶段根据用户涂鸦生成照明效果。这种分解方法简化了学习过程,避免了单一阶段可能需要考虑的外部约束(如光传输一致性等)。LuminaBrush利用从高质量野外图像中提取的“均匀照明”外观来构建训练最终交互式照明绘图模型的配对数据。此外,该工具还可以独立使用“均匀照明阶段”来“去照明”图像。
图生视频大模型,专为动漫和游戏场景设计
Ruyi是图森未来发布的图生视频大模型,专为在消费级显卡上运行而设计,并提供详尽的部署说明和ComfyUI工作流,以便用户能够快速上手。Ruyi凭借在帧间一致性、动作流畅性方面的卓越表现,以及和谐自然的色彩呈现和构图,将为视觉叙事提供全新的可能性。同时,该模型还针对动漫和游戏场景进行深度学习,将成为ACG爱好者理想的创意伙伴。
基于文本生成图像的AI模型
fofr/flux-condensation是一个基于文本生成图像的AI模型,使用Diffusers库和LoRAs技术,能够根据用户提供的文本提示生成相应的图像。该模型在Replicate上训练,具有非商业性质的flux-1-dev许可证。它代表了文本到图像生成技术的最新进展,能够为设计师、艺术家和内容创作者提供强大的视觉表现工具。
一键生成风格化照片的AI相机
Style Me AI Magic Camera是一款利用人工智能技术,让用户能够一键生成具有不同风格的照片的应用。它拥有庞大的模板库,用户只需上传一张头像照片,即可生成风格相似的照片,如职场装扮、欧洲长裙、皇室风格、旅行装扮、游戏角色、动漫卡通等。这款应用的主要优点在于它的便捷性和创造性,用户可以轻松体验到不同风格的自己,并且可以立即分享到各大社交媒体平台。
高效率、高分辨率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像的生成框架,能够高效生成高达4096×4096分辨率的图像。Sana以其快速的速度和强大的文本图像对齐能力,可以在笔记本电脑GPU上部署,代表了图像生成技术的一个重要进步。该模型基于线性扩散变换器,使用预训练的文本编码器和空间压缩的潜在特征编码器,能够根据文本提示生成和修改图像。Sana的开源代码可在GitHub上找到,其研究和应用前景广阔,尤其在艺术创作、教育工具和模型研究等方面。
高分辨率、高效率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像生成框架,能够高效生成高达4096×4096分辨率的图像。Sana以其快速的速度和强大的文本图像对齐能力,使得在笔记本电脑GPU上也能部署。它是一个基于线性扩散变换器(text-to-image generative model)的模型,拥有1648M参数,专门用于生成1024px基础的多尺度高宽图像。Sana模型的主要优点包括高分辨率图像生成、快速的合成速度以及强大的文本图像对齐能力。Sana模型的背景信息显示,它是基于开源代码开发的,可以在GitHub上找到源代码,同时它也遵循特定的许可证(CC BY-NC-SA 4.0 License)。
手訫风格的铅笔素描生成模型
shou_xin是一个基于文本到图像的生成模型,它能够根据用户提供的文本提示生成具有手訫风格的铅笔素描图像。这个模型使用了diffusers库和lora技术,以实现高质量的图像生成。shou_xin模型以其独特的艺术风格和高效的图像生成能力在图像生成领域占有一席之地,特别适合需要快速生成具有特定艺术风格的图像的用户。
高分辨率、多语言支持的文本到图像生成模型
Sana是一个由NVIDIA开发的文本到图像的框架,能够高效生成高达4096×4096分辨率的图像。该模型以惊人的速度合成高分辨率、高质量的图像,并保持强大的文本-图像对齐能力,可部署在笔记本电脑GPU上。Sana模型基于线性扩散变换器,使用预训练的文本编码器和空间压缩的潜在特征编码器,支持Emoji、中文和英文以及混合提示。
最佳免费AI图像生成器
Bylo.ai是一款高级的AI图像生成器,能够将文本描述快速转换为高质量的图像。它支持负面提示和多种模型,包括流行的Flux AI图像生成器,让用户可以自定义创作。Bylo.ai以其免费在线访问、快速高效生成、高级自定义选项、灵活的图像设置和高质量图像输出等特点,成为个人和商业用途的理想选择。
基于FLUX.1-dev的中文人物肖像生成模型
AWPortraitCN是一个基于FLUX.1-dev开发的文本到图像生成模型,专门针对中国人的外貌和审美进行训练。它包含多种类型的肖像,如室内外肖像、时尚和摄影棚照片,具有强大的泛化能力。与原始版本相比,AWPortraitCN在皮肤质感上更加细腻和真实。为了追求更真实的原始图像效果,可以与AWPortraitSR工作流程一起使用。
高分辨率、多语言文本到图像生成模型
Sana是一个由NVIDIA开发的文本到图像的框架,能够高效生成高达4096×4096分辨率的图像。Sana能够以极快的速度合成高分辨率、高质量的图像,并且具有强烈的文本-图像对齐能力,可以在笔记本电脑GPU上部署。该模型基于线性扩散变换器,使用固定预训练的文本编码器和空间压缩的潜在特征编码器,支持英文、中文和表情符号混合提示。Sana的主要优点包括高效率、高分辨率图像生成能力以及多语言支持。
高分辨率、高效率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像生成框架,能够高效生成高达4096×4096分辨率的高清晰度、高文本-图像一致性的图像,并且速度极快,可以在笔记本电脑GPU上部署。Sana模型基于线性扩散变换器,使用预训练的文本编码器和空间压缩的潜在特征编码器。该技术的重要性在于其能够快速生成高质量的图像,对于艺术创作、设计和其他创意领域具有革命性的影响。Sana模型遵循CC BY-NC-SA 4.0许可协议,源代码可在GitHub上找到。
高分辨率、高效率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像的生成框架,能够高效生成高达4096×4096分辨率的图像。Sana以其快速的速度、强大的文本图像对齐能力以及可在笔记本电脑GPU上部署的特性而著称。该模型基于线性扩散变换器,使用预训练的文本编码器和空间压缩的潜在特征编码器,代表了文本到图像生成技术的最新进展。Sana的主要优点包括高分辨率图像生成、快速合成、笔记本电脑GPU上的可部署性,以及开源的代码,使其在研究和实际应用中具有重要价值。
多视图一致性图像生成的便捷解决方案
MV-Adapter是一种基于适配器的多视图图像生成解决方案,它能够在不改变原有网络结构或特征空间的前提下,增强预训练的文本到图像(T2I)模型及其衍生模型。通过更新更少的参数,MV-Adapter实现了高效的训练并保留了预训练模型中嵌入的先验知识,降低了过拟合风险。该技术通过创新的设计,如复制的自注意力层和并行注意力架构,使得适配器能够继承预训练模型的强大先验,以建模新的3D知识。此外,MV-Adapter还提供了统一的条件编码器,无缝整合相机参数和几何信息,支持基于文本和图像的3D生成以及纹理映射等应用。MV-Adapter在Stable Diffusion XL(SDXL)上实现了768分辨率的多视图生成,并展示了其适应性和多功能性,能够扩展到任意视图生成,开启更广泛的应用可能性。
© 2025 AIbase 备案号:闽ICP备08105208号-14