需求人群:
"该模型适用于需要高效推理和代码生成的开发者、研究人员以及对AI模型性能优化感兴趣的团队。其灵活的架构和开源特性使其成为学术研究和工业应用中的理想选择,尤其是在资源受限或需要高性能推理的场景中。"
使用场景示例:
在自然语言处理任务中,用于生成高质量的代码和逻辑推理结果。
作为研究工具,探索循环深度模型在不同任务中的性能和效率。
在资源受限的设备上,通过动态调整计算量实现高效的推理。
产品特色:
支持在测试时动态调整模型深度,根据任务需求灵活配置计算量。
具备强大的推理和代码生成能力,适用于复杂的逻辑任务。
提供多种高级特性,如每token自适应计算、KV缓存共享和连续推理。
支持bfloat16混合精度推理,优化计算性能和资源消耗。
提供详细的使用指南和代码示例,方便开发者快速上手。
使用教程:
1. 使用Hugging Face平台下载模型:通过`transformers`库加载模型和分词器。
2. 配置模型参数:根据需要设置`num_steps`参数以调整模型深度。
3. 进行推理:使用`bfloat16`精度运行模型,调用`generate`方法生成文本。
4. 使用高级特性:如自适应计算、KV缓存共享等,通过特定参数启用。
5. 优化性能:根据任务需求调整模型参数和缓存策略,以达到最佳性能。
浏览量:10
最新流量情况
月访问量
26103.68k
平均访问时长
00:04:43
每次访问页数
5.49
跳出率
43.69%
流量来源
直接访问
48.80%
自然搜索
35.36%
邮件
0.03%
外链引荐
12.91%
社交媒体
2.88%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
16.85%
印度
7.96%
日本
3.46%
俄罗斯
5.47%
美国
16.98%
Huginn-0125是一个35亿参数的潜变量循环深度模型,擅长推理和代码生成。
Huginn-0125是一个由马里兰大学帕克分校Tom Goldstein实验室开发的潜变量循环深度模型。该模型拥有35亿参数,经过8000亿个token的训练,在推理和代码生成方面表现出色。其核心特点是通过循环深度结构在测试时动态调整计算量,能够根据任务需求灵活增加或减少计算步骤,从而在保持性能的同时优化资源利用。该模型基于开源的Hugging Face平台发布,支持社区共享和协作,用户可以自由下载、使用和进一步开发。其开源性和灵活的架构使其成为研究和开发中的重要工具,尤其是在资源受限或需要高性能推理的场景中。
结合DeepSeek R1推理能力和Claude创造力及代码生成能力的统一API和聊天界面。
DeepClaude是一个强大的AI工具,旨在将DeepSeek R1的推理能力与Claude的创造力和代码生成能力相结合,通过统一的API和聊天界面提供服务。它利用高性能的流式API(用Rust编写)实现即时响应,同时支持端到端加密和本地API密钥管理,确保用户数据的隐私和安全。该产品是完全开源的,用户可以自由贡献、修改和部署。其主要优点包括零延迟响应、高度可配置性以及支持用户自带密钥(BYOK),为开发者提供了极大的灵活性和控制权。DeepClaude主要面向需要高效代码生成和AI推理能力的开发者和企业,目前处于免费试用阶段,未来可能会根据使用量收费。
一种新颖的图像到视频采样技术,基于Hunyuan模型实现高质量视频生成。
leapfusion-hunyuan-image2video 是一种基于 Hunyuan 模型的图像到视频生成技术。它通过先进的深度学习算法,将静态图像转换为动态视频,为内容创作者提供了一种全新的创作方式。该技术的主要优点包括高效的内容生成、灵活的定制化能力以及对高质量视频输出的支持。它适用于需要快速生成视频内容的场景,如广告制作、视频特效等领域。该模型目前以开源形式发布,供开发者和研究人员免费使用,未来有望通过社区贡献进一步提升其性能。
DeepSeek-R1-Distill-Llama-8B 是一个高性能的开源语言模型,适用于文本生成和推理任务。
DeepSeek-R1-Distill-Llama-8B 是 DeepSeek 团队开发的高性能语言模型,基于 Llama 架构并经过强化学习和蒸馏优化。该模型在推理、代码生成和多语言任务中表现出色,是开源社区中首个通过纯强化学习提升推理能力的模型。它支持商业使用,允许修改和衍生作品,适合学术研究和企业应用。
DeepSeek-R1-Distill-Llama-70B 是一款基于强化学习优化的大型语言模型,专注于推理和对话能力。
DeepSeek-R1-Distill-Llama-70B 是由 DeepSeek 团队开发的一款大型语言模型,基于 Llama-70B 架构并通过强化学习进行优化。该模型在推理、对话和多语言任务中表现出色,支持多种应用场景,包括代码生成、数学推理和自然语言处理。其主要优点是高效的推理能力和对复杂问题的解决能力,同时支持开源和商业使用。该模型适用于需要高性能语言生成和推理能力的企业和研究机构。
InternLM3-8B-Instruct是一个开源的80亿参数指令模型,用于通用用途和高级推理。
InternLM3-8B-Instruct是InternLM团队开发的大型语言模型,具有卓越的推理能力和知识密集型任务处理能力。该模型在仅使用4万亿高质量词元进行训练的情况下,实现了比同级别模型低75%以上的训练成本,同时在多个基准测试中超越了Llama3.1-8B和Qwen2.5-7B等模型。它支持深度思考模式,能够通过长思维链解决复杂的推理任务,同时也具备流畅的用户交互能力。该模型基于Apache-2.0许可证开源,适用于需要高效推理和知识处理的各种应用场景。
超轻量级数字人模型,移动端实时运行
Ultralight-Digital-Human是一个超轻量级的数字人模型,可以在移动端实时运行。这个模型是开源的,据开发者所知,它是第一个如此轻量级的开源数字人模型。该模型的主要优点包括轻量级设计,适合移动端部署,以及实时运行的能力。它的背后是深度学习技术,特别是在人脸合成和声音模拟方面的应用,这使得数字人模型能够以较低的资源消耗实现高质量的表现。产品目前是免费的,主要面向技术爱好者和开发者。
高效编码的开源大型语言模型
Yi-Coder是一系列开源的代码大型语言模型(LLMs),在少于100亿参数的情况下提供最先进的编码性能。它有两种尺寸—1.5B和9B参数—提供基础和聊天版本,旨在高效推理和灵活训练。Yi-Coder-9B在GitHub的代码库级别代码语料库和从CommonCrawl筛选的代码相关数据上,额外训练了2.4万亿高质量token。Yi-Coder在多种编程任务中表现出色,包括基础和竞技编程、代码编辑和仓库级完成、长上下文理解以及数学推理。
开源的多语言代码生成模型
CodeGeeX4-ALL-9B是CodeGeeX4系列模型的最新开源版本,基于GLM-4-9B持续训练,显著提升了代码生成能力。它支持代码补全、生成、代码解释、网页搜索、函数调用、代码问答等功能,覆盖软件开发的多个场景。在公共基准测试如BigCodeBench和NaturalCodeBench上表现优异,是参数少于10亿的最强代码生成模型,实现了推理速度与模型性能的最佳平衡。
SkyReels V1 是一个开源的人类中心视频基础模型,专注于高质量影视级视频生成。
SkyReels V1 是一个基于 HunyuanVideo 微调的人类中心视频生成模型。它通过高质量影视片段训练,能够生成具有电影级质感的视频内容。该模型在开源领域达到了行业领先水平,尤其在面部表情捕捉和场景理解方面表现出色。其主要优点包括开源领先性、先进的面部动画技术和电影级光影美学。该模型适用于需要高质量视频生成的场景,如影视制作、广告创作等,具有广泛的应用前景。
FlashVideo 是一个高效的高分辨率视频生成模型,专注于细节和保真度的流动。
FlashVideo 是一款专注于高效高分辨率视频生成的深度学习模型。它通过分阶段的生成策略,首先生成低分辨率视频,再通过增强模型提升至高分辨率,从而在保证细节的同时显著降低计算成本。该技术在视频生成领域具有重要意义,尤其是在需要高质量视觉内容的场景中。FlashVideo 适用于多种应用场景,包括内容创作、广告制作和视频编辑等。其开源性质使得研究人员和开发者可以灵活地进行定制和扩展。
VisionAgent是一个用于生成代码以解决视觉任务的库,支持多种LLM提供商。
VisionAgent是一个强大的工具,它利用人工智能和大语言模型(LLM)来生成代码,帮助用户快速解决视觉任务。该工具的主要优点是能够自动将复杂的视觉任务转化为可执行的代码,极大地提高了开发效率。VisionAgent支持多种LLM提供商,用户可以根据自己的需求选择不同的模型。它适用于需要快速开发视觉应用的开发者和企业,能够帮助他们在短时间内实现功能强大的视觉解决方案。VisionAgent目前是免费的,旨在为用户提供高效、便捷的视觉任务处理能力。
OpenThinker-32B 是一款强大的开源推理模型,专为提升开放数据推理能力而设计。
OpenThinker-32B 是由 Open Thoughts 团队开发的一款开源推理模型。它通过扩展数据规模、验证推理路径和扩展模型大小来实现强大的推理能力。该模型在数学、代码和科学等推理基准测试中表现卓越,超越了现有的开放数据推理模型。其主要优点包括开源数据、高性能和可扩展性。该模型基于 Qwen2.5-32B-Instruct 进行微调,并在大规模数据集上训练,旨在为研究人员和开发者提供强大的推理工具。
Ai2 OLMoE 是一款可在 iOS 设备上运行的开源语言模型应用
OLMoE 是由 Ai2 开发的开源语言模型应用,旨在为研究人员和开发者提供一个完全开放的工具包,用于在设备上进行人工智能实验。该应用支持在 iPhone 和 iPad 上离线运行,确保用户数据完全私密。它基于高效的 OLMoE 模型构建,通过优化和量化,使其在移动设备上运行时保持高性能。该应用的开源特性使其成为研究和开发新一代设备端人工智能应用的重要基础。
开源的工业级普通话自动语音识别模型,支持多种应用场景。
FireRedASR 是一个开源的工业级普通话自动语音识别模型,采用 Encoder-Decoder 和 LLM 集成架构。它包含两个变体:FireRedASR-LLM 和 FireRedASR-AED,分别针对高性能和高效能需求设计。该模型在普通话基准测试中表现出色,同时在方言和英文语音识别上也有良好表现。它适用于需要高效语音转文字的工业级应用,如智能助手、视频字幕生成等。模型开源,便于开发者集成和优化。
基于 PyTorch 的音乐、歌曲和音频生成工具包,支持高质量音频生成
InspireMusic 是一个专注于音乐、歌曲和音频生成的 AIGC 工具包和模型框架,采用 PyTorch 开发。它通过音频标记化和解码过程,结合自回归 Transformer 和条件流匹配模型,实现高质量音乐生成。该工具包支持文本提示、音乐风格、结构等多种条件控制,能够生成 24kHz 和 48kHz 的高质量音频,并支持长音频生成。此外,它还提供了方便的微调和推理脚本,方便用户根据需求调整模型。InspireMusic 的开源旨在赋能普通用户通过音乐创作提升研究中的音效表现。
Lumina-Video 是一个用于视频生成的初步尝试项目,支持文本到视频的生成。
Lumina-Video 是 Alpha-VLLM 团队开发的一个视频生成模型,主要用于从文本生成高质量的视频内容。该模型基于深度学习技术,能够根据用户输入的文本提示生成对应的视频,具有高效性和灵活性。它在视频生成领域具有重要意义,为内容创作者提供了强大的工具,能够快速生成视频素材。目前该项目已开源,支持多种分辨率和帧率的视频生成,并提供了详细的安装和使用指南。
RAG-FiT是一个用于提升LLMs利用外部信息能力的库,通过特别创建的RAG增强数据集对模型进行微调。
RAG-FiT是一个强大的工具,旨在通过检索增强生成(RAG)技术提升大型语言模型(LLMs)的能力。它通过创建专门的RAG增强数据集,帮助模型更好地利用外部信息。该库支持从数据准备到模型训练、推理和评估的全流程操作。其主要优点包括模块化设计、可定制化工作流以及对多种RAG配置的支持。RAG-FiT基于开源许可,适合研究人员和开发者进行快速原型开发和实验。
本地运行的人工智能代理,无缝自动化工程任务。
Codename Goose 是一款本地运行的人工智能代理工具,旨在帮助开发者高效完成工程任务。它强调开源和本地运行,确保用户对任务执行有完全控制权。通过连接外部服务器或API,Goose 可以根据用户需求进行扩展,实现复杂任务的自动化处理,从而让开发者专注于更重要的工作。Goose 的开源特性鼓励开发者参与贡献和创新,其本地运行的模式保障了数据隐私和任务执行效率。
VideoJAM 是一种用于增强视频生成模型运动连贯性的框架。
VideoJAM 是一种创新的视频生成框架,旨在通过联合外观 - 运动表示来提升视频生成模型的运动连贯性和视觉质量。该技术通过引入内指导机制(Inner-Guidance),利用模型自身预测的运动信号动态引导视频生成,从而在生成复杂运动类型时表现出色。VideoJAM 的主要优点是能够显著提高视频生成的连贯性,同时保持高质量的视觉效果,且无需对训练数据或模型架构进行大规模修改,即可应用于任何视频生成模型。该技术在视频生成领域具有重要的应用前景,尤其是在需要高度运动连贯性的场景中。
开源的深度研究工具,旨在通过开源框架复现类似Deep Research的功能
Open-source DeepResearch 是一个开源项目,旨在通过开源的框架和工具复现类似 OpenAI Deep Research 的功能。该项目基于 Hugging Face 平台,利用开源的大型语言模型(LLM)和代理框架,通过代码代理和工具调用实现复杂的多步推理和信息检索。其主要优点是开源、可定制性强,并且能够利用社区的力量不断改进。该项目的目标是让每个人都能在本地运行类似 DeepResearch 的智能代理,使用自己喜爱的模型,并且完全本地化和定制化。
持续搜索和阅读网页,直到找到答案(或超出token预算)。
node-DeepResearch 是一个基于 Jina AI 技术的深度研究模型,专注于通过持续搜索和阅读网页来寻找问题的答案。它利用 Gemini 提供的 LLM 能力和 Jina Reader 的网页搜索功能,能够处理复杂的查询任务,并通过多步骤的推理和信息整合来生成答案。该模型的主要优点在于其强大的信息检索能力和推理能力,能够处理复杂的、需要多步骤解答的问题。它适用于需要深入研究和信息挖掘的场景,如学术研究、市场分析等。目前该模型是开源的,用户可以通过 GitHub 获取代码并自行部署使用。
MatAnyone 是一个支持目标指定的稳定视频抠像框架,适用于复杂背景。
MatAnyone 是一种先进的视频抠像技术,专注于通过一致的记忆传播实现稳定的视频抠像。它通过区域自适应记忆融合模块,结合目标指定的分割图,能够在复杂背景中保持语义稳定性和细节完整性。该技术的重要性在于它能够为视频编辑、特效制作和内容创作提供高质量的抠像解决方案,尤其适用于需要精确抠像的场景。MatAnyone 的主要优点是其在核心区域的语义稳定性和边界细节的精细处理能力。它由南洋理工大学和商汤科技的研究团队开发,旨在解决传统抠像方法在复杂背景下的不足。
Tülu 3 405B 是一个大规模开源语言模型,通过强化学习提升性能。
Tülu 3 405B 是由 Allen Institute for AI 开发的开源语言模型,具有 4050 亿参数。该模型通过创新的强化学习框架(RLVR)提升性能,尤其在数学和指令跟随任务中表现出色。它基于 Llama-405B 模型进行优化,采用监督微调、偏好优化等技术。Tülu 3 405B 的开源性质使其成为研究和开发领域的强大工具,适用于需要高性能语言模型的各种应用场景。
这是一个完全开放的 DeepSeek-R1 模型的复现项目,旨在帮助开发者复现和构建基于 R1 的模型。
huggingface/open-r1 是一个开源项目,致力于复现 DeepSeek-R1 模型。该项目提供了一系列脚本和工具,用于训练、评估和生成合成数据,支持多种训练方法和硬件配置。其主要优点是完全开放,允许开发者自由使用和改进,对于希望在深度学习和自然语言处理领域进行研究和开发的用户来说,是一个非常有价值的资源。该项目目前没有明确的定价,适合学术研究和商业用途。
Janus-Pro-7B 是一个新型的自回归框架,统一多模态理解和生成。
Janus-Pro-7B 是一个强大的多模态模型,能够同时处理文本和图像数据。它通过分离视觉编码路径,解决了传统模型在理解和生成任务中的冲突,提高了模型的灵活性和性能。该模型基于 DeepSeek-LLM 架构,使用 SigLIP-L 作为视觉编码器,支持 384x384 的图像输入,并在多模态任务中表现出色。其主要优点包括高效性、灵活性和强大的多模态处理能力。该模型适用于需要多模态交互的场景,例如图像生成和文本理解。
Janus-Pro-1B 是一个统一多模态理解和生成的自回归框架。
Janus-Pro-1B 是一个创新的多模态模型,专注于统一多模态理解和生成。它通过分离视觉编码路径,解决了传统方法在理解和生成任务中的冲突问题,同时保持了单个统一的 Transformer 架构。这种设计不仅提高了模型的灵活性,还使其在多模态任务中表现出色,甚至超越了特定任务的模型。该模型基于 DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base 构建,使用 SigLIP-L 作为视觉编码器,支持 384x384 的图像输入,并采用特定的图像生成 tokenizer。其开源性和灵活性使其成为下一代多模态模型的有力候选。
首个面向语境智能的人类级实时交互系统,支持多情感、多风格语音交互。
SpeechGPT 2.0-preview 是一款由复旦大学自然语言处理实验室开发的先进语音交互模型。它通过海量语音数据训练,实现了低延迟、高自然度的语音交互能力。该模型能够模拟多种情感、风格和角色的语音表达,同时支持工具调用、在线搜索和外部知识库访问等功能。其主要优点包括强大的语音风格泛化能力、多角色模拟以及低延迟交互体验。目前该模型仅支持中文语音交互,未来计划扩展到更多语言。
YuE是一个开源的音乐生成模型,能够将歌词转化为完整的歌曲。
YuE是一个开创性的开源基础模型系列,专为音乐生成设计,能够将歌词转化为完整的歌曲。它能够生成包含吸引人的主唱和配套伴奏的完整歌曲,支持多种音乐风格。该模型基于深度学习技术,具有强大的生成能力和灵活性,能够为音乐创作者提供强大的工具支持。其开源特性也使得研究人员和开发者可以在此基础上进行进一步的研究和开发。
Tarsier 是由字节跳动推出的用于生成高质量视频描述的大型视频语言模型。
Tarsier 是由字节跳动研究团队开发的一系列大规模视频语言模型,旨在生成高质量的视频描述,并具备强大的视频理解能力。该模型通过两阶段训练策略(多任务预训练和多粒度指令微调)显著提升了视频描述的精度和细节。其主要优点包括高精度的视频描述能力、对复杂视频内容的理解能力以及在多个视频理解基准测试中取得的 SOTA(State-of-the-Art)结果。Tarsier 的背景基于对现有视频语言模型在描述细节和准确性上的不足进行改进,通过大规模高质量数据训练和创新的训练方法,使其在视频描述领域达到了新的高度。该模型目前未明确定价,主要面向学术研究和商业应用,适合需要高质量视频内容理解和生成的场景。
© 2025 AIbase 备案号:闽ICP备08105208号-14