需求人群:
["设计师","内容创作者","摄影爱好者","视频爱好者"]
使用场景示例:
设计师可以使用GoEnhance AI提升作品细节
摄影爱好者可以Upscale旧照片分辨率
视频创作者可以使用视频到视频功能转换风格
产品特色:
视频到视频转换,支持多种风格
图像增强
超分辨率上采样
浏览量:1827
最新流量情况
月访问量
1218.62k
平均访问时长
00:02:21
每次访问页数
3.76
跳出率
38.58%
流量来源
直接访问
36.64%
自然搜索
39.17%
邮件
0.10%
外链引荐
14.70%
社交媒体
8.90%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
巴西
3.96%
中国
9.00%
印度
11.20%
韩国
3.38%
美国
10.81%
GoEnhance AI是一款基于AI的图文增强工具
GoEnhance AI是一款基于人工智能的图像和视频增强工具。它可以实现视频到视频、图像增强和超分辨率scaling等功能。GoEnhance AI采用了最先进的深度学习算法,可以增强和上采样图像到极致的细节和高分辨率。它简单易用,功能强大,是创作者、设计师等用户释放创意的绝佳工具。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
基于GIMM-VFI的ComfyUI帧插值工具
ComfyUI-GIMM-VFI是一个基于GIMM-VFI算法的帧插值工具,使用户能够在图像和视频处理中实现高质量的帧插值效果。该技术通过在连续帧之间插入新的帧来提高视频的帧率,从而使得动作看起来更加流畅。这对于视频游戏、电影后期制作和其他需要高帧率视频的应用场景尤为重要。产品背景信息显示,它是基于Python开发的,并且依赖于CuPy库,特别适用于需要进行高性能计算的场景。
视频眼神校正API,让视频中的眼神看起来始终注视着摄像头。
Sieve Eye Contact Correction API 是一个为开发者设计的快速且高质量的视频眼神校正API。该技术通过重定向眼神,确保视频中的人物即使没有直接看向摄像头,也能模拟出与摄像头进行眼神交流的效果。它支持多种自定义选项来微调眼神重定向,保留了原始的眨眼和头部动作,并通过随机的“看向别处”功能来避免眼神呆板。此外,还提供了分屏视图和可视化选项,以便于调试和分析。该API主要面向视频制作者、在线教育提供者和任何需要提升视频交流质量的用户。定价为每分钟视频0.10美元。
行业领先的面部操作平台
FaceFusion Labs 是一个专注于面部操作的领先平台,它利用先进的技术来实现面部特征的融合和操作。该平台主要优点包括高精度的面部识别和融合能力,以及对开发者友好的API接口。FaceFusion Labs 背景信息显示,它在2024年10月15日进行了初始提交,由Henry Ruhs主导开发。产品定位为开源项目,鼓励社区贡献和协作。
专注于计算机视觉和机器学习领域的研究与创新的博客网站
Shangchen Zhou 是一位在计算机视觉和机器学习领域有着深厚研究背景的博士生,他的工作主要集中在视觉内容增强、编辑和生成AI(2D和3D)上。他的研究成果广泛应用于图像和视频的超分辨率、去模糊、低光照增强等领域,为提升视觉内容的质量和用户体验做出了重要贡献。
利用多指令视频到音频合成技术
Draw an Audio是一个创新的视频到音频合成技术,它通过多指令控制,能够根据视频内容生成高质量的同步音频。这项技术不仅提升了音频生成的可控性和灵活性,还能够在多阶段产生混合音频,展现出更广泛的实际应用潜力。
统一多模态理解和生成的单一变换器
Show-o是一个用于多模态理解和生成的单一变换器模型,它能够处理图像字幕、视觉问答、文本到图像生成、文本引导的修复和扩展以及混合模态生成。该模型由新加坡国立大学的Show Lab和字节跳动共同开发,采用最新的深度学习技术,能够理解和生成多种模态的数据,是人工智能领域的一大突破。
多模态视觉任务的高效转换模型
LLaVA-OneVision是一款由字节跳动公司与多所大学合作开发的多模态大型模型(LMMs),它在单图像、多图像和视频场景中推动了开放大型多模态模型的性能边界。该模型的设计允许在不同模态/场景之间进行强大的迁移学习,展现出新的综合能力,特别是在视频理解和跨场景能力方面,通过图像到视频的任务转换进行了演示。
下一代视频和图像实时对象分割模型。
Meta Segment Anything Model 2 (SAM 2)是Meta公司开发的下一代模型,用于视频和图像中的实时、可提示的对象分割。它实现了最先进的性能,并且支持零样本泛化,即无需定制适配即可应用于之前未见过的视觉内容。SAM 2的发布遵循开放科学的方法,代码和模型权重在Apache 2.0许可下共享,SA-V数据集也在CC BY 4.0许可下共享。
交互式模块化服装生成
IMAGDressing是一个交互式模块化服装生成模型,旨在为虚拟试穿系统提供灵活和可控的定制化服务。该模型通过结合CLIP的语义特征和VAE的纹理特征,使用混合注意力模块将这些特征整合到去噪UNet中,确保用户可以控制编辑。此外,IMAGDressing还提供了IGPair数据集,包含超过30万对服装和穿着图像,建立了标准的数据组装流程。该模型可以与ControlNet、IP-Adapter、T2I-Adapter和AnimateDiff等扩展插件结合使用,增强多样性和可控性。
大型多模态模型,处理多图像、视频和3D数据。
LLaVA-NeXT是一个大型多模态模型,它通过统一的交错数据格式处理多图像、视频、3D和单图像数据,展示了在不同视觉数据模态上的联合训练能力。该模型在多图像基准测试中取得了领先的结果,并在不同场景中通过适当的数据混合提高了之前单独任务的性能或保持了性能。
玩转热门主流 AI 模型,并接入在你的产品中
X Model 是一个集成热门主流 AI 模型的平台,用户可以在其产品中轻松接入这些模型。它的主要优点包括多样的模型选择、高质量的输出结果以及简单易用的接入流程。X Model 价格灵活,适用于各种规模的业务。
AuraSR 是基于 GAN 的超分辨率图像处理模型,可用于提升生成图像的质量。
AuraSR 是基于 GAN 的 Super-Resolution 模型,通过图像条件化增强技术,提升生成图像的质量。该模型采用 GigaGAN 论文的变体实现,并使用 Torch 框架。AuraSR 的优势在于能够有效提高图像的分辨率和质量,适用于图像处理领域。
将您的角色照片转换成粘土动画风格的图像
粘土 AI 是一款 AI 工具,可以将照片转换成粘土动画风格的图像。通过分析面部特征,生成逼真的效果,提供灵活的编辑功能。价格定位为免费使用。使用比较简单,上传你的照片并提交,稍等10-20 秒可以获得粘土动画风格的图像。
通过对比对齐进行 Pure 和 Lightning ID 定制
PuLID 是一个专注于人脸身份定制的深度学习模型,通过对比对齐技术实现高保真度的人脸身份编辑。该模型能够减少对原始模型行为的干扰,同时提供多种应用,如风格变化、IP融合、配饰修改等。
AI 图像擦除器,轻松删除照片中不需要的人、物体、文字和水印。
AI 图像擦除器是一款基于人工智能技术的工具,能够快速、简单地从照片中删除不需要的内容,提高照片的整体质量。该工具操作简便,免费使用,适用于个人和专业用户。
视频超分辨率模型,细节丰富
VideoGigaGAN是一款基于大规模图像上采样器GigaGAN的视频超分辨率(VSR)模型。它能够生成具有高频细节和时间一致性的视频。该模型通过添加时间注意力层和特征传播模块,显著提高了视频的时间一致性,并使用反锯齿块减少锯齿效应。VideoGigaGAN在公共数据集上与最先进的VSR模型进行了比较,并展示了8倍超分辨率的视频结果。
使用 LCM-Lookahead 技术的文本到图像个性化模型
LCM-Lookahead for Encoder-based Text-to-Image Personalization 是一种使用 LCM-Lookahead 技术的文本到图像个性化模型,它可以通过在模型训练和分类器指导中传播图像空间损失来实现更好的身份保真度,同时保留布局多样性和提示对齐。
一种通过计数事实数据集和自举监督实现真实物体删除和插入的方法
ObjectDrop是一种监督方法,旨在实现照片级真实的物体删除和插入。它利用了一个计数事实数据集和自助监督技术。主要功能是可以从图像中移除物体及其对场景产生的影响(如遮挡、阴影和反射),也能够将物体以极其逼真的方式插入图像。它通过在一个小型的专门捕获的数据集上微调扩散模型来实现物体删除,而对于物体插入,它采用自助监督方式利用删除模型合成大规模的计数事实数据集,在此数据集上训练后再微调到真实数据集,从而获得高质量的插入模型。相比之前的方法,ObjectDrop在物体删除和插入的真实性上有了显著提升。
实时一步潜在扩散模型,可用图像条件控制生成
SDXS是一种新的扩散模型,通过模型微型化和减少采样步骤,大幅降低了模型延迟。它利用知识蒸馏来简化U-Net和图像解码器架构,并引入了一种创新的单步DM训练技术,使用特征匹配和分数蒸馆。SDXS-512和SDXS-1024模型可在单个GPU上分别实现约100 FPS和30 FPS的推理速度,比之前模型快30至60倍。此外,该训练方法在图像条件控制方面也有潜在应用,可实现高效的图像到图像翻译。
利用人工智能技术为您的图像创建全新的风格和版本
Freepik Reimagine是一款基于人工智能的图像创作工具,可以利用先进的AI算法为您的现有图像创建全新的版本和风格。无需繁琐的编辑操作,只需上传图像并设置所需的变化,AI就能自动生成全新的图像变体。该工具具有强大的创作能力,可以根据用户需求改变图像的风格、构图、色彩等元素,为您带来无限的创意可能。同时,它操作简单,即使是没有专业背景的用户也能快速上手。无论您是设计师、艺术家还是创意爱好者,都可以利用Freepik Reimagine激发无穷创意,提高工作效率。该工具目前处于公测阶段,免费使用。
快速智能去背景
RMBG是一个基于人工智能的图像背景去除工具,可以在几秒内自动去掉图片中的背景。该工具使用前沿的深度学习算法,无需任何人工操作就可以快速高效地实现图片背景的消除。RMBG完全免费,用户可以随意上传图片进行处理,非常方便。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
© 2024 AIbase 备案号:闽ICP备08105208号-14