需求人群:
"GameFactory 主要面向游戏开发者、虚拟现实内容创作者以及对交互式视频生成技术感兴趣的科研人员。它为这些用户提供了一个强大的工具,能够快速生成多样化的游戏场景和互动体验,从而降低游戏开发成本,提高内容创作效率。此外,该技术也适合教育领域,用于创建沉浸式的学习环境。"
使用场景示例:
根据文本提示生成玩家在熔岩田野中行走的第一人称视角游戏视频。
根据用户输入的操作指令,生成玩家在峡谷中行走的实时交互视频。
结合文本描述和动作控制,生成玩家在雪山环境中探索的沉浸式游戏体验。
产品特色:
利用预训练视频扩散模型,实现开放领域的游戏场景生成。
通过多阶段训练策略,确保场景生成的多样性和高质量。
支持动作控制模块,实现键盘和鼠标输入与视频生成的实时交互。
采用滑动窗口机制,处理动作延迟效应,提升交互体验。
支持自回归视频生成,实现连续的游戏视频输出。
使用教程:
1. 访问 GameFactory 页面,查看文档和教程。
2. 准备输入文本提示,描述所需的游戏场景。
3. 提供操作指令(如键盘按键、鼠标移动),用于控制游戏中的交互。
4. 使用模型生成游戏视频,根据需要调整参数以优化输出。
5. 导出生成的视频,用于游戏开发或其他创意项目。
浏览量:24
最新流量情况
月访问量
448
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
44.73%
流量来源
直接访问
34.49%
自然搜索
45.61%
邮件
0.21%
外链引荐
13.79%
社交媒体
4.24%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
印度尼西亚
24.03%
印度
24.42%
GameFactory 是一个基于预训练视频扩散模型的通用世界模型,可创建开放领域的游戏。
GameFactory 是一个创新的通用世界模型,专注于从少量的《我的世界》游戏视频数据中学习,并利用预训练视频扩散模型的先验知识来生成新的游戏内容。该技术的核心优势在于其开放领域的生成能力,能够根据用户输入的文本提示和操作指令生成多样化的游戏场景和互动体验。它不仅展示了强大的场景生成能力,还通过多阶段训练策略和可插拔的动作控制模块,实现了高质量的交互式视频生成。该技术在游戏开发、虚拟现实和创意内容生成等领域具有广阔的应用前景,目前尚未明确其价格和商业化定位。
通过 Pandora Avatars 创建逼真的虚拟形象,用于游戏、社交媒体和虚拟现实应用。
Pandora Avatars 是一款强大的 SaaS 工具,利用人工智能技术,可用于创建逼真的虚拟形象。它可以用于游戏开发、社交媒体和虚拟现实应用。Pandora Avatars 提供了丰富的功能,包括自定义人物特征、动画控制和情感表达。通过使用 Pandora Avatars,用户可以轻松地创建个性化的虚拟形象,并将其集成到各种应用中。该工具的优势在于其高度逼真的图像质量和灵活的定制选项。Pandora Avatars 的定价根据使用情况而定,提供不同的套餐和计费选项,以满足不同用户的需求。它定位于开发者、设计师和创作者,为他们提供一个简便且高效的方式来创建逼真的虚拟形象。
一种新颖的图像到视频采样技术,基于Hunyuan模型实现高质量视频生成。
leapfusion-hunyuan-image2video 是一种基于 Hunyuan 模型的图像到视频生成技术。它通过先进的深度学习算法,将静态图像转换为动态视频,为内容创作者提供了一种全新的创作方式。该技术的主要优点包括高效的内容生成、灵活的定制化能力以及对高质量视频输出的支持。它适用于需要快速生成视频内容的场景,如广告制作、视频特效等领域。该模型目前以开源形式发布,供开发者和研究人员免费使用,未来有望通过社区贡献进一步提升其性能。
利用先进人工智能技术,将静态照片转化为浪漫接吻动画。
AI Kissing Video Generator Free 是一款基于先进人工智能技术的在线平台,能够将普通静态照片转化为自然流畅的浪漫接吻动画。该技术利用深度学习模型,专门针对浪漫互动进行训练,确保生成的动画高度逼真且自然。产品注重用户隐私与数据安全,所有上传内容在处理后自动删除。其主要面向情侣、内容创作者、婚礼策划师等群体,提供高质量的浪漫视频生成服务。产品提供免费试用版本,同时有付费升级选项,满足不同用户的需求。
Seaweed-APT是一种支持实时单步生成1280x720 24fps视频的模型。
Seaweed-APT是一种用于视频生成的模型,通过对抗性后训练技术,实现了大规模文本到视频的单步生成。该模型能够在短时间内生成高质量的视频,具有重要的技术意义和应用价值。其主要优点是速度快、生成效果好,适用于需要快速生成视频的场景。目前尚未明确具体的价格和市场定位。
大规模视频生成模型,可创建逼真视觉效果与自然连贯动作。
Luma Ray2 是一款先进的视频生成模型,基于 Luma 新的多模态架构训练,计算能力是 Ray1 的 10 倍。它能够理解文本指令,并可接受图像和视频输入,生成具有快速连贯动作、超逼真细节和逻辑事件序列的视频,使生成的视频更接近生产就绪状态。目前提供文本到视频的生成功能,图像到视频、视频到视频和编辑功能即将推出。产品主要面向需要高质量视频生成的用户,如视频创作者、广告公司等,目前仅对付费订阅用户开放,可通过官网链接尝试使用。
一种基于扩散变换器网络的高动态、逼真肖像图像动画技术。
Hallo3是一种用于肖像图像动画的技术,它利用预训练的基于变换器的视频生成模型,能够生成高度动态和逼真的视频,有效解决了非正面视角、动态对象渲染和沉浸式背景生成等挑战。该技术由复旦大学和百度公司的研究人员共同开发,具有强大的泛化能力,为肖像动画领域带来了新的突破。
场景感知的语义导航与指令引导控制模型
SCENIC是一个文本条件的场景交互模型,能够适应具有不同地形的复杂场景,并支持使用自然语言进行用户指定的语义控制。该模型通过用户指定的轨迹作为子目标和文本提示,来导航3D场景。SCENIC利用层次化推理场景的方法,结合运动与文本之间的帧对齐,实现不同运动风格之间的无缝过渡。该技术的重要性在于其能够生成符合真实物理规则和用户指令的角色导航动作,对于虚拟现实、增强现实以及游戏开发等领域具有重要意义。
开源图像到视频生成模型
Ruyi-Mini-7B是由CreateAI团队开发的开源图像到视频生成模型,具有约71亿参数,能够从输入图像生成360p到720p分辨率的视频帧,最长5秒。模型支持不同宽高比,并增强了运动和相机控制功能,提供更大的灵活性和创造力。该模型在Apache 2.0许可下发布,意味着用户可以自由使用和修改。
生成式世界模型,为电影、游戏及更多领域带来革新。
Explorer是由Odyssey推出的生成式世界模型,旨在通过人工智能技术加速电影和游戏世界的创造过程,并开启全新的娱乐形式。该技术由皮克斯联合创始人Ed Catmull支持,代表了电影、游戏以及更广泛娱乐领域中的下一个重大技术突破。Explorer能够将任何图像转化为详细的3D世界,具有生成逼真世界的能力,并且支持手动编辑,以适应不同的创作需求。
快速因果视频生成器,实现即时视频生成。
CausVid是一个先进的视频生成模型,它通过将预训练的双向扩散变换器适配为因果变换器,实现了即时视频帧的生成。这一技术的重要性在于它能够显著减少视频生成的延迟,使得视频生成能够以交互式帧率(9.4FPS)在单个GPU上进行流式生成。CausVid模型支持从文本到视频的生成,以及零样本图像到视频的生成,展现了视频生成技术的新高度。
3D自主角色的沉浸式交互框架
SOLAMI是一个端到端的社交视觉-语言-动作(VLA)建模框架,用于与3D自主角色进行沉浸式交互。该框架通过综合三个主要方面构建3D自主角色:社交VLA架构、交互式多模态数据和沉浸式VR界面。SOLAMI的主要优点包括更精确和自然的字符响应(包括语音和动作),与用户期望一致,并且延迟更低。该技术的重要性在于它为3D自主角色提供了类似人类的社交智能,使其能够感知、理解和与人类进行交互,这是人工智能领域中的一个开放且基础的问题。
腾讯开源的大型视频生成模型训练框架
HunyuanVideo是腾讯开源的一个系统性框架,用于训练大型视频生成模型。该框架通过采用数据策划、图像-视频联合模型训练和高效的基础设施等关键技术,成功训练了一个超过130亿参数的视频生成模型,是所有开源模型中最大的。HunyuanVideo在视觉质量、运动多样性、文本-视频对齐和生成稳定性方面表现出色,超越了包括Runway Gen-3、Luma 1.6在内的多个行业领先模型。通过开源代码和模型权重,HunyuanVideo旨在缩小闭源和开源视频生成模型之间的差距,推动视频生成生态系统的活跃发展。
文本图像到视频生成模型
Allegro-TI2V是一个文本图像到视频生成模型,它能够根据用户提供的提示和图像生成视频内容。该模型以其开源性、多样化的内容创作能力、高质量的输出、小巧高效的模型参数以及支持多种精度和GPU内存优化而受到关注。它代表了当前人工智能技术在视频生成领域的前沿进展,具有重要的技术价值和商业应用潜力。Allegro-TI2V模型在Hugging Face平台上提供,遵循Apache 2.0开源协议,用户可以免费下载和使用。
视频生成模型Sora的存档库
SoraVids是一个基于Hugging Face平台的视频生成模型Sora的存档库。它包含了87个视频和83个对应的提示,这些视频和提示在OpenAI撤销API密钥前被公开展示。这些视频均为MIME类型video/mp4,帧率为30 FPS。SoraVids的背景是OpenAI的视频生成技术,它允许用户通过文本提示生成视频内容。这个存档库的重要性在于它保存了在API密钥被撤销前生成的视频,为研究和教育提供了宝贵的资源。
基于DiT的视频生成模型,实时生成高质量视频。
LTX-Video是由Lightricks开发的首个基于DiT的视频生成模型,能够实时生成高质量的视频内容。该模型以24 FPS的速度生成768x512分辨率的视频,速度超过观看速度。模型经过大规模多样化视频数据集的训练,能够生成高分辨率且内容真实多样的视频。LTX-Video支持文本到视频(text-to-video)以及图像+文本到视频(image+text-to-video)的应用场景。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
视频生成评估基准测试
Movie Gen Bench是由Facebook Research发布的视频生成评估基准测试,旨在为未来在视频生成领域的研究提供公平且易于比较的标准。该基准测试包括Movie Gen Video Bench和Movie Gen Audio Bench两个部分,分别针对视频内容生成和音频生成进行评估。Movie Gen Bench的发布,对于推动视频生成技术的发展和评估具有重要意义,它能够帮助研究人员和开发者更好地理解和改进视频生成模型的性能。
共语手势视频重现技术
TANGO是一个基于层次化音频-运动嵌入和扩散插值的共语手势视频重现技术。它利用先进的人工智能算法,将语音信号转换成相应的手势动作,实现视频中人物手势的自然重现。这项技术在视频制作、虚拟现实、增强现实等领域具有广泛的应用前景,能够提升视频内容的互动性和真实感。TANGO由东京大学和CyberAgent AI Lab联合开发,代表了当前人工智能在手势识别和动作生成领域的前沿水平。
使用AI生成任何3D模型
3D Mesh Generation是Anything World推出的一款在线3D模型生成工具,它利用人工智能技术,允许用户通过简单的文字描述或上传图片来快速生成3D模型。这项技术的重要性在于它极大地简化了3D模型的创建过程,使得没有专业3D建模技能的用户也能轻松创建出高质量的3D内容。产品背景信息显示,Anything World致力于通过其平台提供创新的3D内容创建解决方案,而3D Mesh Generation是其产品线中的重要组成部分。关于价格,用户可以在注册后查看具体的定价方案。
重新定义视频创作
Hailuo AI Video Generator 是一款利用人工智能技术,根据文本提示自动生成视频内容的工具。它通过深度学习算法,将用户的文字描述转化为视觉图像,极大地简化了视频制作流程,提高了创作效率。该产品适用于需要快速生成视频内容的个人和企业,特别是在广告、社交媒体内容制作和电影预览等领域。
数字人模型,支持生成普通话视频
JoyHallo是一个数字人模型,专为普通话视频生成而设计。它通过收集来自京东健康国际有限公司员工的29小时普通话视频,创建了jdh-Hallo数据集。该数据集覆盖了不同年龄和说话风格,包括对话和专业医疗话题。JoyHallo模型采用中国wav2vec2模型进行音频特征嵌入,并提出了一种半解耦结构来捕捉唇部、表情和姿态特征之间的相互关系,提高了信息利用效率,并加快了推理速度14.3%。此外,JoyHallo在生成英语视频方面也表现出色,展现了卓越的跨语言生成能力。
谷歌旗下领先的人工智能研究公司
Google DeepMind 是谷歌旗下的一家领先的人工智能公司,专注于开发先进的机器学习算法和系统。DeepMind 以其在深度学习和强化学习领域的开创性工作而闻名,其研究涵盖了从游戏到医疗保健等多个领域。DeepMind 的目标是通过构建智能系统来解决复杂的问题,推动科学和医学的进步。
生成视频的开源模型
CogVideoX是一个开源的视频生成模型,由清华大学团队开发,支持从文本描述生成视频。它提供了多种视频生成模型,包括入门级和大型模型,以满足不同质量和成本需求。模型支持多种精度,包括FP16和BF16,推荐使用与模型训练时相同的精度进行推理。CogVideoX-5B模型特别适用于需要生成高质量视频内容的场景,如电影制作、游戏开发和广告创意。
全身运动生成框架,支持多模态控制
ControlMM是一个全身运动生成框架,具有即插即用的多模态控制功能,能够在文本到运动(Text-to-Motion)、语音到手势(Speech-to-Gesture)和音乐到舞蹈(Music-to-Dance)等多个领域中生成稳健的运动。该模型在可控性、序列性和运动合理性方面具有明显优势,为人工智能领域提供了一种新的运动生成解决方案。
文本到视频的生成模型
CogVideoX是一个开源的视频生成模型,与商业模型同源,支持通过文本描述生成视频内容。它代表了文本到视频生成技术的最新进展,具有生成高质量视频的能力,能够广泛应用于娱乐、教育、商业宣传等领域。
可控视频和图像生成技术
ControlNeXt是一个开源的图像和视频生成模型,它通过减少高达90%的可训练参数,实现了更快的收敛速度和卓越的效率。该项目支持多种控制信息形式,并且可以与LoRA技术结合使用,以改变风格并确保更稳定的生成效果。
© 2025 AIbase 备案号:闽ICP备08105208号-14