需求人群:
"目标受众为需要在多种语言环境下进行文本生成和处理的开发者和研究人员。由于模型支持长上下文处理和双语能力,它特别适合于需要处理长篇文本和多语言数据的场景,如机器翻译、文本摘要、对话系统等。"
使用场景示例:
利用EXAONE-3.5-32B-Instruct模型开发一个多语言聊天机器人,提供流畅的对话体验。
在机器翻译项目中使用该模型,实现英语到韩语的高效翻译。
作为内容创作者的辅助工具,使用该模型生成创意文案和文章草稿。
产品特色:
支持长达32,768令牌的长上下文处理能力。
在多种真实世界用例中展现出最先进的性能。
提供2.4B、7.8B和32B三种不同参数规模的模型以适应不同部署需求。
模型经过指令调优,特别适合对话和文本生成任务。
支持双语(英语和韩语),拓宽了模型的应用范围。
模型在多个评估基准上表现优异,如MT-Bench、LiveBench等。
提供预量化模型,支持不同的量化类型,以优化推理性能。
使用教程:
1. 安装必要的库,如`transformers`和`torch`。
2. 使用`AutoModelForCausalLM`和`AutoTokenizer`从Hugging Face加载模型和分词器。
3. 准备输入提示(prompt),可以是英文或韩文。
4. 使用模型提供的系统提示来构建对话消息模板。
5. 将消息模板传递给分词器,获取输入ID。
6. 使用模型的`generate`方法生成文本。
7. 使用分词器的`decode`方法将生成的令牌转换回文本。
浏览量:22
最新流量情况
月访问量
23904.81k
平均访问时长
00:04:51
每次访问页数
5.82
跳出率
43.33%
流量来源
直接访问
48.28%
自然搜索
35.88%
邮件
0.03%
外链引荐
12.71%
社交媒体
3.06%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
评估大型语言模型的逻辑推理和上下文理解能力。
Turtle Benchmark是一款基于'Turtle Soup'游戏的新型、无法作弊的基准测试,专注于评估大型语言模型(LLMs)的逻辑推理和上下文理解能力。它通过消除对背景知识的需求,提供了客观和无偏见的测试结果,具有可量化的结果,并且通过使用真实用户生成的问题,使得模型无法被'游戏化'。
LG AI Research开发的双语文本生成模型
EXAONE-3.5-2.4B-Instruct-AWQ是由LG AI Research开发的一系列双语(英语和韩语)指令调优生成模型,参数范围从2.4B到32B。这些模型支持长达32K令牌的长上下文处理,并且在真实世界用例和长上下文理解方面展现出最先进的性能,同时在与近期发布的类似大小模型相比,在通用领域保持竞争力。该模型在部署到小型或资源受限设备上进行了优化,并且采用了AWQ量化技术,实现了4位群组权重量化(W4A16g128)。
LG AI Research开发的双语文本生成模型
EXAONE-3.5-2.4B-Instruct-GGUF是由LG AI Research开发的一系列双语(英语和韩语)指令调优的生成型模型,参数范围从2.4B到32B。这些模型支持长达32K令牌的长上下文处理,并在真实世界用例和长上下文理解方面展现出最先进的性能,同时在与近期发布的类似大小模型相比,在通用领域保持竞争力。该模型的重要性在于其优化了在小型或资源受限设备上的部署,同时提供了强大的性能。
智能对话应用,上下文理解、代码展示、多端同步
小秋 AI 是优秀的智能对话应用,支持上下文理解、代码块展示、代码块一键复制,兼容适配移动端与 PC 端,会话数据可进行多端同步。同时支持切换不同的 AI 应用并创建属于自己的 AI 应用,希望它能够成为您的得力助手,让每个人能尽情享受人工智能的魅力。
从语言到视觉的长上下文转换模型
LongVA是一个能够处理超过2000帧或超过200K视觉标记的长上下文转换模型。它在Video-MME中的表现在7B模型中处于领先地位。该模型基于CUDA 11.8和A100-SXM-80G进行了测试,并且可以通过Hugging Face平台进行快速启动和使用。
LG AI Research开发的32B参数双语生成模型
EXAONE-3.5-32B-Instruct是由LG AI Research开发的一系列指令调优的双语(英语和韩语)生成模型,包含从2.4B到32B参数的不同模型。这些模型支持长达32K令牌的长上下文处理,并在真实世界用例和长上下文理解方面展现出了最先进的性能,同时在与近期发布的类似大小模型相比时,在通用领域也保持了竞争力。
全球最长上下文窗口大模型
Baichuan2-192K推出全球最长上下文窗口大模型Baichuan2-192K,一次可输入35万字超越Claude2。Baichuan2-192K不仅在上下文窗口长度上超越Claude2,在长窗口文本生成质量、长上下文理解以及长文本问答、摘要等方面的表现也全面领先Claude2。Baichuan2-192K通过算法和工程的极致优化,实现了窗口长度和模型性能之间的平衡,做到了窗口长度和模型性能的同步提升。Baichuan2-192K已经开放了API接口,提供给企业用户,并已经在法律、媒体、金融等行业落地应用。
超长上下文模型,革新软件开发
Magic团队开发的超长上下文模型(LTM)能够处理高达100M tokens的上下文信息,这在AI领域是一个重大突破。该技术主要针对软件开发领域,通过在推理过程中提供大量代码、文档和库的上下文,极大地提升了代码合成的质量和效率。与传统的循环神经网络和状态空间模型相比,LTM模型在存储和检索大量信息方面具有明显优势,能够构建更复杂的逻辑电路。此外,Magic团队还与Google Cloud合作,利用NVIDIA GB200 NVL72构建下一代AI超级计算机,进一步推动模型的推理和训练效率。
EXAONE 3.5系列的7.8B参数双语生成模型
EXAONE 3.5是LG AI Research开发的一系列双语(英语和韩语)指令调优的生成模型,参数从2.4B到32B不等。这些模型支持长达32K令牌的长上下文处理,在真实世界用例和长上下文理解方面展现出了最先进的性能,同时在与近期发布的类似大小模型相比,在通用领域保持竞争力。EXAONE 3.5模型包括:1) 2.4B模型,优化用于部署在小型或资源受限的设备上;2) 7.8B模型,与前代模型大小匹配但提供改进的性能;3) 32B模型,提供强大的性能。
高效无限上下文语言模型的官方实现
Samba是一个简单而强大的混合模型,具有无限的上下文长度。它的架构非常简单:Samba = Mamba + MLP + 滑动窗口注意力 + 层级MLP堆叠。Samba-3.8B模型在Phi3数据集上训练了3.2万亿个token,主要基准测试(例如MMLU、GSM8K和HumanEval)上的表现大大超过了Phi3-mini。Samba还可以通过最少的指令调整实现完美的长上下文检索能力,同时保持与序列长度的线性复杂度。这使得Samba-3.8B-instruct在下游任务(如长上下文摘要)上表现出色。
LG AI Research开发的多语言生成模型
EXAONE-3.5-7.8B-Instruct是由LG AI Research开发的一系列指令调优的双语(英语和韩语)生成模型,参数范围从2.4B到32B。这些模型支持长达32K令牌的长上下文处理,并在真实世界用例和长上下文理解方面展现出最先进的性能,同时在与近期发布的类似大小模型相比,在通用领域保持竞争力。
扩展LLM上下文窗口
LLM Context Extender是一款旨在扩展大型语言模型(LLMs)上下文窗口的工具。它通过调整RoPE的基础频率和缩放注意力logits的方式,帮助LLMs有效适应更大的上下文窗口。该工具在精细调整性能和稳健性方面验证了其方法的优越性,并展示了在仅有100个样本和6个训练步骤的情况下,将LLaMA-2-7B-Chat的上下文窗口扩展到16,384的非凡效率。此外,还探讨了数据组成和训练课程如何影响特定下游任务的上下文窗口扩展,建议以长对话进行LLMs的精细调整作为良好的起点。
MiniMax-Text-01是一个强大的语言模型,具有4560亿总参数,能够处理长达400万token的上下文。
MiniMax-Text-01是一个由MiniMaxAI开发的大型语言模型,拥有4560亿总参数,其中每个token激活459亿参数。它采用了混合架构,结合了闪电注意力、softmax注意力和专家混合(MoE)技术,通过先进的并行策略和创新的计算-通信重叠方法,如线性注意力序列并行主义加(LASP+)、变长环形注意力、专家张量并行(ETP)等,将训练上下文长度扩展到100万token,并能在推理时处理长达400万token的上下文。在多个学术基准测试中,MiniMax-Text-01展现出了顶级模型的性能。
LG AI Research开发的多语言生成模型
EXAONE-3.5-32B-Instruct-AWQ是LG AI Research开发的一系列指令调优的双语(英语和韩语)生成模型,参数从2.4B到32B不等。这些模型支持长达32K令牌的长上下文处理,在真实世界用例和长上下文理解方面展现出最先进的性能,同时在与最近发布的类似大小模型相比,在通用领域保持竞争力。该模型通过AWQ量化技术,实现了4位组级别的权重量化,优化了模型的部署效率。
权限感知上下文提供者
ReLLM提供权限感知上下文,可用于大型语言模型(如ChatGPT)的应用中。通过将用户的长期记忆提供给ChatGPT,实现更自然的对话体验。ReLLM还处理与ChatGPT的通信和消息链管理,保证数据安全性。只提供用户可以访问的数据。数据加密存储,解密只在使用时进行。定价详见官方网站。
将LLM上下文窗口扩展至200万令牌的技术
LongRoPE是微软推出的技术,可以将预训练大型语言模型(LLM)的上下文窗口扩展到2048k(200万)令牌,实现从短上下文到长上下文的扩展,降低训练成本和时间,同时保持原有短上下文窗口性能。适用于提高语言模型在长文本上的理解和生成能力,提升机器阅读理解、文本摘要和长篇文章生成等任务。
超级上下文定向引擎!
Neuwo是一款领先的上下文人工智能引擎,用于内容分类和品牌安全。我们的技术帮助出版商和数字资产管理者改善用户体验并提供不打扰的广告。Neuwo通过丰富您的宝贵数据,提供元标签、相关内容和IAB分类,实现上下文广告的最大化利用。我们的使命是使您的数据更有价值!
在本地运行GPT-4和基础模型,无需上传屏幕上下文。
AmbientGPT是一个革命性的编程辅助工具,它允许开发者在本地运行GPT-4和基础模型,同时能够直接推断屏幕上下文,从而无需手动上传上下文信息。这大大提高了代码编写和问题解决的效率。产品目前处于测试阶段,适用于拥有ARM64架构MacBook的开发者,并且需要一个兼容的OpenAI API密钥。
强大的语言模型,拥有4560亿总参数,可处理长达400万token的上下文。
MiniMax-01是一个具有4560亿总参数的强大语言模型,其中每个token激活459亿参数。它采用混合架构,结合了闪电注意力、softmax注意力和专家混合(MoE),通过先进的并行策略和创新的计算-通信重叠方法,如线性注意力序列并行主义加(LASP+)、varlen环形注意力、专家张量并行(ETP)等,将训练上下文长度扩展到100万tokens,在推理时可处理长达400万tokens的上下文。在多个学术基准测试中,MiniMax-01展现了顶级模型的性能。
高效编码的开源大型语言模型
Yi-Coder是一系列开源的代码大型语言模型(LLMs),在少于100亿参数的情况下提供最先进的编码性能。它有两种尺寸—1.5B和9B参数—提供基础和聊天版本,旨在高效推理和灵活训练。Yi-Coder-9B在GitHub的代码库级别代码语料库和从CommonCrawl筛选的代码相关数据上,额外训练了2.4万亿高质量token。Yi-Coder在多种编程任务中表现出色,包括基础和竞技编程、代码编辑和仓库级完成、长上下文理解以及数学推理。
Omnipilot是一款在macOS上工作的AI副驾驶员。它可以在任何应用程序中为您自动完成文本,从Apple Notes到Gmail,并且还可以使用来自您最近使用的应用程序的上下文,使用GPT-4进行更长的上下文生成。
Omnipilot是一款在macOS上工作的AI副驾驶员。它可以在任何应用程序中为您自动完成文本,从Apple Notes到Gmail,并且还可以使用来自您最近使用的应用程序的上下文,使用GPT-4进行更长的上下文生成。它的主要优点是提高工作效率,减少写作和输入的时间和努力。Omnipilot的定位是为用户提供更快速、智能的文本输入和生成体验。
AI驱动的Figma插件,实现文本的智能替换。
AI Content Mate是一个Figma插件,它通过AI技术帮助用户在设计中自动选择和替换文本。它能够理解文本的上下文,提供智能且相关的替代选项,同时允许用户添加自定义的注释和指南以确保生成的文本符合特定需求。这个插件提供了免费访问,通过Grok-cloud API密钥,用户可以享受AI驱动的文本转换功能,无需任何成本。
EgoLife是一个长期、多模态、多视角的日常生活AI助手项目,旨在推进长期上下文理解研究。
EgoLife是一个面向长期、多模态、多视角日常生活的AI助手项目。该项目通过记录六名志愿者一周的共享生活体验,生成了约50小时的视频数据,涵盖日常活动、社交互动等场景。其多模态数据(包括视频、视线、IMU数据)和多视角摄像头系统为AI研究提供了丰富的上下文信息。此外,该项目提出了EgoRAG框架,用于解决长期上下文理解任务,推动了AI在复杂环境中的应用能力。
EasyContext演示了如何利用现有技术组合,来训练700K和1M上下文的语言模型。
EasyContext是一个开源项目,旨在通过结合多种技术手段,实现使用普通硬件训练语言模型的上下文长度达到100万词元。主要采用的技术包括序列并行、Deepspeed zero3离载、Flash注意力以及激活checkpoint等。该项目不提出新的创新点,而是展示如何组合现有的技术手段来实现这一目标。已成功训练出Llama-2-7B和Llama-2-13B两个模型,分别在8块A100和16块A100上实现了700K和1M词元的上下文长度。
高性能细粒度中文理解模型,提供双语生成能力,专注于中国元素理解。
混元-DiT是腾讯推出的首个中英双语DiT架构的人工智能模型,专注于中文元素理解,具备长文本理解能力和细粒度语义理解。该模型能够分析和理解长篇文本中的信息,并生成相应的艺术作品,包括但不限于人物写真、创意创作等。混元-DiT的推出,对于提升中文文本理解的深度和广度,以及促进中英双语交流具有重要意义。
70亿参数的超长上下文对话模型
InternLM2.5-7B-Chat-1M 是一个开源的70亿参数的对话模型,具有卓越的推理能力,在数学推理方面超越了同量级模型。该模型支持1M超长上下文窗口,能够处理长文本任务,如LongBench等。此外,它还具备强大的工具调用能力,能够从上百个网页搜集信息进行分析推理。
体验革命性的FLUX Kontext AI图像生成和编辑,利用具有上下文感知的技术创建、修改和增强图像。
Kontext AI的FLUX Kontext是一项具有上下文感知能力的技术,可用于图像生成和编辑。其主要优点包括快速、准确的生成和编辑图像,支持复杂的编辑工作流程,结合了传统文本到图像模型和流式生成建模。
一种提升场景级视频生成能力的技术。
长上下文调优(LCT)旨在解决当前单次生成能力与现实叙事视频制作之间的差距。该技术通过数据驱动的方法直接学习场景级一致性,支持交互式多镜头开发和合成生成,适用于视频制作的各个方面。
实时零唇语音转换的流式上下文感知语言建模
StreamVoice是一种基于语言模型的零唇语音转换模型,可实现实时转换,无需完整的源语音。它采用全因果上下文感知语言模型,结合时间独立的声学预测器,能够在每个时间步骤交替处理语义和声学特征,从而消除对完整源语音的依赖。为了增强在流式处理中可能出现的上下文不完整而导致的性能下降,StreamVoice通过两种策略增强了语言模型的上下文感知性:1)教师引导的上下文预见,在训练过程中利用教师模型总结当前和未来的语义上下文,引导模型对缺失上下文进行预测;2)语义屏蔽策略,促进从先前受损的语义和声学输入进行声学预测,增强上下文学习能力。值得注意的是,StreamVoice是第一个基于语言模型的流式零唇语音转换模型,无需任何未来预测。实验结果表明,StreamVoice具有流式转换能力,同时保持与非流式语音转换系统相媲美的零唇性能。
© 2025 AIbase 备案号:闽ICP备08105208号-14