需求人群:
"Yi-Coder适合软件开发者、编程竞赛参与者和AI研究者。它能够提高代码编写效率,帮助解决复杂的编程问题,并为AI在编程领域的应用提供研究基础。"
使用场景示例:
开发者使用Yi-Coder自动补全代码,提高开发效率
编程竞赛选手利用Yi-Coder解决算法问题,获得更高排名
AI研究者使用Yi-Coder进行代码生成和推理能力的研究
产品特色:
支持52种主要编程语言的高质量token预训练
长上下文建模:最大上下文窗口128K tokens,实现项目级代码理解和生成
在少于10亿参数的模型中性能卓越,与更大模型性能相当
在LiveCodeBench平台上,Yi-Coder-9B-Chat实现了23.4%的通过率,超越其他模型
在CodeEditorBench中,Yi-Coder-9B在代码修改任务中表现优异
在CrossCodeEval中,Yi-Coder在跨文件代码补全方面表现出色
在'Needle in the code'任务中,Yi-Coder-9B展示了其长上下文建模能力
在Program-Aid Math Reasoning评估中,Yi-Coder-9B在数学推理方面表现突出
使用教程:
访问Yi-Coder的GitHub页面,了解模型的详细信息和使用指南
下载并安装必要的软件依赖,如Python环境和Transformers库
根据Yi-Coder的README文档,设置模型训练或推理的环境
使用Yi-Coder API进行代码生成或参与到现有的代码编辑任务中
在项目中集成Yi-Coder,利用其长上下文理解和代码生成能力优化开发流程
参与Yi-Coder的社区讨论,获取技术支持和最佳实践分享
通过Discord或邮件与Yi-Coder的开发团队联系,获取更深入的帮助和讨论
浏览量:69
最新流量情况
月访问量
1510
平均访问时长
00:00:00
每次访问页数
1.02
跳出率
45.64%
流量来源
直接访问
36.74%
自然搜索
27.27%
邮件
0.03%
外链引荐
24.60%
社交媒体
10.56%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
印度
15.94%
土耳其
10.12%
美国
66.25%
QwQ-Max-Preview 是 Qwen 系列的最新成果,基于 Qwen2.5-Max 构建,具备强大的推理和多领域应用能力。
QwQ-Max-Preview 是 Qwen 系列的最新成果,基于 Qwen2.5-Max 构建。它在数学、编程以及通用任务中展现了更强的能力,同时在与 Agent 相关的工作流中也有不错的表现。作为即将发布的 QwQ-Max 的预览版,这个版本还在持续优化中。其主要优点包括深度推理、数学、编程和 Agent 任务的强大能力。未来计划以 Apache 2.0 许可协议开源发布 QwQ-Max 以及 Qwen2.5-Max,旨在推动跨领域应用的创新。
一个专注于超大规模系统设计和优化的工具,提供高效解决方案。
The Ultra-Scale Playbook 是一个基于 Hugging Face Spaces 提供的模型工具,专注于超大规模系统的优化和设计。它利用先进的技术框架,帮助开发者和企业高效地构建和管理大规模系统。该工具的主要优点包括高度的可扩展性、优化的性能和易于集成的特性。它适用于需要处理复杂数据和大规模计算任务的场景,如人工智能、机器学习和大数据处理。产品目前以开源的形式提供,适合各种规模的企业和开发者使用。
高效编码的开源大型语言模型
Yi-Coder是一系列开源的代码大型语言模型(LLMs),在少于100亿参数的情况下提供最先进的编码性能。它有两种尺寸—1.5B和9B参数—提供基础和聊天版本,旨在高效推理和灵活训练。Yi-Coder-9B在GitHub的代码库级别代码语料库和从CommonCrawl筛选的代码相关数据上,额外训练了2.4万亿高质量token。Yi-Coder在多种编程任务中表现出色,包括基础和竞技编程、代码编辑和仓库级完成、长上下文理解以及数学推理。
Gemini 2.5 是谷歌最智能的 AI 模型,具备推理能力。
Gemini 2.5 是谷歌推出的最先进的 AI 模型,具备高效的推理能力和编码性能,能够处理复杂问题,并在多项基准测试中表现出色。该模型引入了新的思维能力,结合增强的基础模型和后期训练,支持更复杂的任务,旨在为开发者和企业提供强大的支持。Gemini 2.5 Pro 可在 Google AI Studio 和 Gemini 应用中使用,适合需要高级推理和编码能力的用户。
通过强化学习驱动的金融推理大模型。
Fin-R1 是一个专为金融领域设计的大型语言模型,旨在提升金融推理能力。由上海财经大学和财跃星辰联合研发,基于 Qwen2.5-7B-Instruct 进行微调和强化学习,具有高效的金融推理能力,适用于银行、证券等核心金融场景。该模型免费开源,便于用户使用和改进。
一款 21B 通用推理模型,适合低延迟应用。
Reka Flash 3 是一款从零开始训练的 21 亿参数的通用推理模型,利用合成和公共数据集进行监督微调,结合基于模型和基于规则的奖励进行强化学习。该模型在低延迟和设备端部署应用中表现优异,具有较强的研究能力。它目前是同类开源模型中的最佳选择,适合于各种自然语言处理任务和应用场景。
一个开源文本转语音系统,致力于实现人类语音的自然化。
Orpheus TTS 是一个基于 Llama-3b 模型的开源文本转语音系统,旨在提供更加自然的人类语音合成。它具备较强的语音克隆能力和情感表达能力,适合各种实时应用场景。该产品是免费的,旨在为开发者和研究者提供便捷的语音合成工具。
增强文本与视觉任务处理能力的开源模型。
Mistral-Small-3.1-24B-Base-2503 是一款具有 240 亿参数的先进开源模型,支持多语言和长上下文处理,适用于文本与视觉任务。它是 Mistral Small 3.1 的基础模型,具有较强的多模态能力,适合企业需求。
Light-R1 是一个专注于长链推理(Long COT)的开源项目,通过课程式 SFT、DPO 和 RL 提供从零开始的训练方法。
Light-R1 是一个由 Qihoo360 开发的开源项目,旨在通过课程式监督微调(SFT)、直接偏好优化(DPO)和强化学习(RL)训练长链推理模型。该项目通过去污染数据集和高效的训练方法,实现了从零开始的长链推理能力。其主要优点包括开源的训练数据、低成本的训练方式以及在数学推理领域的卓越性能。项目背景基于当前长链推理模型的训练需求,旨在提供一种透明且可复现的训练方法。项目目前免费开源,适合研究机构和开发者使用。
一个用于生成对话式语音的模型,支持从文本和音频输入生成高质量的语音。
CSM 是一个由 Sesame 开发的对话式语音生成模型,它能够根据文本和音频输入生成高质量的语音。该模型基于 Llama 架构,并使用 Mimi 音频编码器。它主要用于语音合成和交互式语音应用,例如语音助手和教育工具。CSM 的主要优点是能够生成自然流畅的语音,并且可以通过上下文信息优化语音输出。该模型目前是开源的,适用于研究和教育目的。
Inductive Moment Matching 是一种新型的生成模型,用于高质量图像生成。
Inductive Moment Matching (IMM) 是一种先进的生成模型技术,主要用于高质量图像生成。该技术通过创新的归纳矩匹配方法,显著提高了生成图像的质量和多样性。其主要优点包括高效性、灵活性以及对复杂数据分布的强大建模能力。IMM 由 Luma AI 和斯坦福大学的研究团队开发,旨在推动生成模型领域的发展,为图像生成、数据增强和创意设计等应用提供强大的技术支持。该项目开源了代码和预训练模型,方便研究人员和开发者快速上手和应用。
一个轻量级且强大的多智能体工作流框架
OpenAI Agents SDK是一个用于构建多智能体工作流的框架。它允许开发者通过配置指令、工具、安全机制和智能体之间的交接来创建复杂的自动化流程。该框架支持与任何符合OpenAI Chat Completions API格式的模型集成,具有高度的灵活性和可扩展性。它主要用于编程场景中,帮助开发者快速构建和优化智能体驱动的应用程序。
Instella 是由 AMD 开发的高性能开源语言模型,专为加速开源语言模型的发展而设计。
Instella 是由 AMD GenAI 团队开发的一系列高性能开源语言模型,基于 AMD Instinct™ MI300X GPU 训练而成。该模型在性能上显著优于同尺寸的其他开源语言模型,并且在功能上与 Llama-3.2-3B 和 Qwen2.5-3B 等模型相媲美。Instella 提供模型权重、训练代码和训练数据,旨在推动开源语言模型的发展。其主要优点包括高性能、开源开放以及对 AMD 硬件的优化支持。
两个会话型AI代理在确认彼此为AI后切换到声音级协议进行通信
GibberLink是一个基于ggwave数据传输协议的AI通信模型。它允许两个独立的AI代理在对话中识别彼此为AI后,从英语切换到声音级协议进行通信。这种技术展示了AI在识别和切换通信方式上的灵活性,具有重要的研究和应用价值。项目基于开源协议,适合开发者进行二次开发和集成。目前未明确提及价格,但其开源性质意味着开发者可以免费使用和扩展。
Migician 是一个专注于多图像定位的多模态大语言模型,能够实现自由形式的多图像精确定位。
Migician 是清华大学自然语言处理实验室开发的一种多模态大语言模型,专注于多图像定位任务。该模型通过引入创新的训练框架和大规模数据集 MGrounding-630k,显著提升了多图像场景下的精确定位能力。它不仅超越了现有的多模态大语言模型,甚至在性能上超过了更大规模的 70B 模型。Migician 的主要优点在于其能够处理复杂的多图像任务,并提供自由形式的定位指令,使其在多图像理解领域具有重要的应用前景。该模型目前在 Hugging Face 上开源,供研究人员和开发者使用。
工业级可控高效的零样本文本到语音系统
IndexTTS 是一种基于 GPT 风格的文本到语音(TTS)模型,主要基于 XTTS 和 Tortoise 进行开发。它能够通过拼音纠正汉字发音,并通过标点符号控制停顿。该系统在中文场景中引入了字符-拼音混合建模方法,显著提高了训练稳定性、音色相似性和音质。此外,它还集成了 BigVGAN2 来优化音频质量。该模型在数万小时的数据上进行训练,性能超越了当前流行的 TTS 系统,如 XTTS、CosyVoice2 和 F5-TTS。IndexTTS 适用于需要高质量语音合成的场景,如语音助手、有声读物等,其开源性质也使其适合学术研究和商业应用。
一个用于构建Retrieval-Augmented Generation (RAG)应用的开源项目。
bRAG-langchain是一个开源项目,专注于Retrieval-Augmented Generation (RAG)技术的研究与应用。RAG是一种结合了检索和生成的AI技术,通过检索相关文档并生成回答,为用户提供更准确、更丰富的信息。该项目提供了从基础到高级的RAG实现指南,帮助开发者快速上手并构建自己的RAG应用。其主要优点是开源、灵活且易于扩展,适合各种需要自然语言处理和信息检索的应用场景。
Claude 3.7 Sonnet 是 Anthropic 推出的最新智能模型,支持快速响应和深度推理。
Claude 3.7 Sonnet 是 Anthropic 推出的最新混合推理模型,能够实现快速响应和深度推理的无缝切换。它在编程、前端开发等领域表现出色,并通过 API 提供对推理深度的精细控制。该模型不仅提升了代码生成和调试能力,还优化了对复杂任务的处理,适用于企业级应用。其定价与前代产品一致,输入每百万 token 收费 3 美元,输出每百万 token 收费 15 美元。
一个开源的多智能体聊天界面,支持在一个动态对话中管理多个智能体。
Open Multi-Agent Canvas 是一个基于 Next.js、LangGraph 和 CopilotKit 构建的开源多智能体聊天界面。它允许用户在一个动态对话中管理多个智能体,主要用于旅行规划和研究。该产品利用先进的技术,为用户提供高效、灵活的多智能体交互体验。其开源特性使得开发者可以根据需求进行定制和扩展,具有很高的灵活性和可扩展性。
一种通过文本迷宫解决任务来增强大型语言模型视觉推理能力的创新方法
AlphaMaze 是一个专注于提升大型语言模型(LLM)视觉推理能力的项目。它通过文本形式描述的迷宫任务来训练模型,使其能够理解和规划空间结构。这种方法不仅避免了复杂的图像处理,还通过文本描述直接评估模型的空间理解能力。其主要优点是能够揭示模型如何思考空间问题,而不仅仅是能否解决问题。该模型基于开源框架,旨在推动语言模型在视觉推理领域的研究和发展。
SkyReels V1 是一个开源的人类中心视频基础模型,专注于高质量影视级视频生成。
SkyReels V1 是一个基于 HunyuanVideo 微调的人类中心视频生成模型。它通过高质量影视片段训练,能够生成具有电影级质感的视频内容。该模型在开源领域达到了行业领先水平,尤其在面部表情捕捉和场景理解方面表现出色。其主要优点包括开源领先性、先进的面部动画技术和电影级光影美学。该模型适用于需要高质量视频生成的场景,如影视制作、广告创作等,具有广泛的应用前景。
OmniParser V2 是一种将任何 LLM 转化为计算机使用代理的技术。
OmniParser V2 是微软研究团队开发的一种先进的人工智能模型,旨在将大型语言模型(LLM)转化为能够理解和操作图形用户界面(GUI)的智能代理。该技术通过将界面截图从像素空间转换为可解释的结构化元素,使 LLM 能够更准确地识别可交互图标,并在屏幕上执行预定动作。OmniParser V2 在检测小图标和快速推理方面取得了显著进步,其结合 GPT-4o 在 ScreenSpot Pro 基准测试中达到了 39.6% 的平均准确率,远超原始模型的 0.8%。此外,OmniParser V2 还提供了 OmniTool 工具,支持与多种 LLM 结合使用,进一步推动了 GUI 自动化的发展。
OpenThinker-32B 是一款强大的开源推理模型,专为提升开放数据推理能力而设计。
OpenThinker-32B 是由 Open Thoughts 团队开发的一款开源推理模型。它通过扩展数据规模、验证推理路径和扩展模型大小来实现强大的推理能力。该模型在数学、代码和科学等推理基准测试中表现卓越,超越了现有的开放数据推理模型。其主要优点包括开源数据、高性能和可扩展性。该模型基于 Qwen2.5-32B-Instruct 进行微调,并在大规模数据集上训练,旨在为研究人员和开发者提供强大的推理工具。
Ai2 OLMoE 是一款可在 iOS 设备上运行的开源语言模型应用
OLMoE 是由 Ai2 开发的开源语言模型应用,旨在为研究人员和开发者提供一个完全开放的工具包,用于在设备上进行人工智能实验。该应用支持在 iPhone 和 iPad 上离线运行,确保用户数据完全私密。它基于高效的 OLMoE 模型构建,通过优化和量化,使其在移动设备上运行时保持高性能。该应用的开源特性使其成为研究和开发新一代设备端人工智能应用的重要基础。
Huginn-0125是一个35亿参数的潜变量循环深度模型,擅长推理和代码生成。
Huginn-0125是一个由马里兰大学帕克分校Tom Goldstein实验室开发的潜变量循环深度模型。该模型拥有35亿参数,经过8000亿个token的训练,在推理和代码生成方面表现出色。其核心特点是通过循环深度结构在测试时动态调整计算量,能够根据任务需求灵活增加或减少计算步骤,从而在保持性能的同时优化资源利用。该模型基于开源的Hugging Face平台发布,支持社区共享和协作,用户可以自由下载、使用和进一步开发。其开源性和灵活的架构使其成为研究和开发中的重要工具,尤其是在资源受限或需要高性能推理的场景中。
开源的工业级普通话自动语音识别模型,支持多种应用场景。
FireRedASR 是一个开源的工业级普通话自动语音识别模型,采用 Encoder-Decoder 和 LLM 集成架构。它包含两个变体:FireRedASR-LLM 和 FireRedASR-AED,分别针对高性能和高效能需求设计。该模型在普通话基准测试中表现出色,同时在方言和英文语音识别上也有良好表现。它适用于需要高效语音转文字的工业级应用,如智能助手、视频字幕生成等。模型开源,便于开发者集成和优化。
RAG-FiT是一个用于提升LLMs利用外部信息能力的库,通过特别创建的RAG增强数据集对模型进行微调。
RAG-FiT是一个强大的工具,旨在通过检索增强生成(RAG)技术提升大型语言模型(LLMs)的能力。它通过创建专门的RAG增强数据集,帮助模型更好地利用外部信息。该库支持从数据准备到模型训练、推理和评估的全流程操作。其主要优点包括模块化设计、可定制化工作流以及对多种RAG配置的支持。RAG-FiT基于开源许可,适合研究人员和开发者进行快速原型开发和实验。
本地运行的人工智能代理,无缝自动化工程任务。
Codename Goose 是一款本地运行的人工智能代理工具,旨在帮助开发者高效完成工程任务。它强调开源和本地运行,确保用户对任务执行有完全控制权。通过连接外部服务器或API,Goose 可以根据用户需求进行扩展,实现复杂任务的自动化处理,从而让开发者专注于更重要的工作。Goose 的开源特性鼓励开发者参与贡献和创新,其本地运行的模式保障了数据隐私和任务执行效率。
© 2025 AIbase 备案号:闽ICP备08105208号-14