需求人群:
["音乐创作","音乐教育","音乐理论分析"]
使用场景示例:
音乐家使用ChatMusician创作新的音乐作品
音乐教师利用ChatMusician分析和解释音乐理论
软件开发者集成ChatMusician到音乐应用中,提供自动作曲功能
产品特色:
理解和生成音乐
基于文本的音乐表示法
音乐与语言的结合
浏览量:375
最新流量情况
月访问量
67
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
46.30%
流量来源
直接访问
0
自然搜索
100.00%
邮件
0
外链引荐
0
社交媒体
0
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
日本
100.00%
集成音乐能力的开源LLM
ChatMusician是一个开源的大型语言模型(LLM),它通过持续的预训练和微调,集成了音乐能力。该模型基于文本兼容的音乐表示法(ABC记谱法),将音乐视为第二语言。ChatMusician能够在不依赖外部多模态神经结构或分词器的情况下,理解和生成音乐。
全球合作训练的10B参数语言模型聊天工具
INTELLECT-1 Chat是一个由全球合作训练的10B参数语言模型驱动的聊天工具。它代表了人工智能领域中大规模语言模型的最新进展,通过分散式训练,提高了模型的多样性和适应性。这种技术的主要优点包括能够理解和生成自然语言,提供流畅的对话体验,并且能够处理大量的语言数据。产品背景信息显示,这是一个首次展示分散式训练可能性的演示,易于使用且富有趣味性。价格方面,页面提供了登录以保存和重访聊天的功能,暗示了可能的付费或会员服务模式。
高性能英文语言模型,适用于多样化任务
OLMo-2-1124-13B-DPO是经过监督微调和DPO训练的13B参数大型语言模型,主要针对英文,旨在提供在聊天、数学、GSM8K和IFEval等多种任务上的卓越性能。该模型是OLMo系列的一部分,旨在推动语言模型的科学研究。模型训练基于Dolma数据集,并公开代码、检查点、日志和训练细节。
科学文献综合评估平台
ScholarQABench是一个用于测试大型语言模型(LLMs)在协助研究人员进行科学文献综合方面能力的综合评估平台。它来源于OpenScholar项目,提供了一个全面的评估框架,包括多个数据集和评估脚本,以衡量模型在不同科学领域的表现。该平台的重要性在于它能够帮助研究人员和开发者理解并提升语言模型在科学文献研究中的实用性和准确性。
科学文献合成的检索增强型语言模型
OpenScholar是一个检索增强型语言模型(LM),旨在通过首先搜索文献中的相关论文,然后基于这些来源生成回答,来帮助科学家有效地导航和综合科学文献。该模型对于处理每年发表的数百万篇科学论文,以及帮助科学家找到他们需要的信息或跟上单一子领域最新发现具有重要意义。
高性能的英文学术基准语言模型
OLMo 2 13B是由Allen Institute for AI (Ai2)开发的一款基于Transformer的自回归语言模型,专注于英文学术基准测试。该模型在训练过程中使用了高达5万亿个token,展现出与同等规模的全开放模型相媲美或更优的性能,并在英语学术基准上与Meta和Mistral的开放权重模型竞争。OLMo 2 13B的发布包括所有代码、检查点、日志和相关的训练细节,旨在推动语言模型的科学研究。
最先进的全开放语言模型
OLMo 2是由Ai2推出的最新全开放语言模型,包括7B和13B两种规模的模型,训练数据高达5T tokens。这些模型在性能上与同等规模的全开放模型相当或更优,并且在英语学术基准测试中与开放权重模型如Llama 3.1竞争。OLMo 2的开发注重模型训练的稳定性、阶段性训练干预、最先进的后训练方法和可操作的评估框架。这些技术的应用使得OLMo 2在多个任务上表现出色,特别是在知识回忆、常识、一般和数学推理方面。
开源的先进语言模型后训练框架
Tülu 3是一系列开源的先进语言模型,它们经过后训练以适应更多的任务和用户。这些模型通过结合专有方法的部分细节、新颖技术和已建立的学术研究,实现了复杂的训练过程。Tülu 3的成功根植于精心的数据管理、严格的实验、创新的方法论和改进的训练基础设施。通过公开分享数据、配方和发现,Tülu 3旨在赋予社区探索新的和创新的后训练方法的能力。
使用AI技术创作个性化音乐
免费AI歌曲生成器是一个在线工具,使用人工智能技术根据用户输入创作个性化歌曲。它结合旋律、和声和节奏,创造完整的歌曲。产品背景信息显示,该工具受到全球超过25,000名音乐家、内容创作者和音乐爱好者的信任。它提供免费、无需订阅的音乐创作服务,支持多种音乐风格,并允许用户商业使用生成的歌曲。
专为软件改进设计的开源大型语言模型。
Lingma SWE-GPT是一个开源的大型语言模型,专注于软件工程领域的任务,旨在提供智能化的开发支持。该模型基于Qwen系列基础模型,经过额外训练以增强其在复杂软件工程任务中的能力。它在软件工程智能代理的权威排行榜上表现出色,适合需要自动化软件改进的开发团队和研究人员。
人类中心语言模型和模拟器的领导者
Nous Research专注于开发以人为中心的语言模型和模拟器,致力于将AI系统与现实世界用户体验对齐。我们的主要研究领域包括模型架构、数据合成、微调和推理。我们优先开发开源、人类兼容的模型,挑战传统的封闭模型方法。
快速为视频添加自定义音乐和旁白
Aimi Sync是一个在线应用,允许用户轻松地将定制化、生成性音乐同步到视频中。音乐100%版权清晰且免版税。产品的主要优点包括自动化音乐配乐、创意控制、多样化的音乐类型和多种语言及声音的旁白生成,使得内容能够触及更广泛的受众。Aimi Sync的背景信息显示,它旨在简化视频制作流程,提高效率,同时确保音乐和旁白的版权问题得到妥善处理。产品目前提供免费试用。
开源的网页自动化库,支持任何大型语言模型(LLM)
browser-use是一个开源的网页自动化库,允许大型语言模型(LLM)与网站进行交互,通过简单的接口实现复杂的网页操作。该技术的主要优点包括对多种语言模型的通用支持、交互元素自动检测、多标签页管理、XPath提取、视觉模型支持等。它解决了传统网页自动化中的一些痛点,如动态内容处理、长任务解决等。browser-use以其灵活性和易用性,为开发者提供了一个强大的工具,以构建更加智能和自动化的网页交互体验。
一款通过纯语言模型实现的文本到语音合成模型
OuteTTS-0.1-350M是一款基于纯语言模型的文本到语音合成技术,它不需要外部适配器或复杂架构,通过精心设计的提示和音频标记实现高质量的语音合成。该模型基于LLaMa架构,使用350M参数,展示了直接使用语言模型进行语音合成的潜力。它通过三个步骤处理音频:使用WavTokenizer进行音频标记化、CTC强制对齐创建精确的单词到音频标记映射、以及遵循特定格式的结构化提示创建。OuteTTS的主要优点包括纯语言建模方法、声音克隆能力、与llama.cpp和GGUF格式的兼容性。
Meta 开发的子十亿参数语言模型,适用于设备端应用。
Meta 开发的自回归语言模型,采用优化架构,适合资源受限设备。优点多,如集成多种技术,支持零样本推理等,价格免费,面向自然语言处理研究人员和开发者。
高效优化的600M参数语言模型,专为设备端应用设计。
MobileLLM-600M是由Meta开发的自回归语言模型,采用了优化的Transformer架构,专为资源受限的设备端应用而设计。该模型集成了SwiGLU激活函数、深度薄架构、嵌入共享和分组查询注意力等关键技术。MobileLLM-600M在零样本常识推理任务上取得了显著的性能提升,与之前的125M/350M SoTA模型相比,分别提高了2.7%/4.3%的准确率。该模型的设计理念可扩展至更大模型,如MobileLLM-1B/1.5B,均取得了SoTA结果。
高保真文本引导的音乐生成与编辑模型
MelodyFlow是一个基于文本控制的高保真音乐生成和编辑模型,它使用连续潜在表示序列,避免了离散表示的信息丢失问题。该模型基于扩散变换器架构,经过流匹配目标训练,能够生成和编辑多样化的高质量立体声样本,且具有文本描述的简单性。MelodyFlow还探索了一种新的正则化潜在反转方法,用于零样本测试时的文本引导编辑,并展示了其在多种音乐编辑提示中的优越性能。该模型在客观和主观指标上进行了评估,证明了其在标准文本到音乐基准测试中的质量与效率上与评估基线相当,并且在音乐编辑方面超越了以往的最先进技术。
高效优化的子十亿参数语言模型,专为设备端应用设计
MobileLLM-350M是由Meta开发的自回归语言模型,采用优化的Transformer架构,专为设备端应用设计,以满足资源受限的环境。该模型整合了SwiGLU激活函数、深层薄架构、嵌入共享和分组查询注意力等关键技术,实现了在零样本常识推理任务上的显著准确率提升。MobileLLM-350M在保持较小模型尺寸的同时,提供了与更大模型相媲美的性能,是设备端自然语言处理应用的理想选择。
高效优化的小型语言模型,专为设备端应用设计。
MobileLLM-125M是由Meta开发的自动回归语言模型,它利用优化的变换器架构,专为资源受限的设备端应用而设计。该模型集成了包括SwiGLU激活函数、深度薄架构、嵌入共享和分组查询注意力等多项关键技术。MobileLLM-125M/350M在零样本常识推理任务上相较于前代125M/350M SoTA模型分别取得了2.7%和4.3%的准确率提升。该模型的设计理念可有效扩展到更大模型,MobileLLM-600M/1B/1.5B均取得了SoTA结果。
优化的小型语言模型,适用于移动设备
MobileLLM是一种针对移动设备优化的小型语言模型,专注于设计少于十亿参数的高质量LLMs,以适应移动部署的实用性。与传统观念不同,该研究强调了模型架构在小型LLMs中的重要性。通过深度和薄型架构,结合嵌入共享和分组查询注意力机制,MobileLLM在准确性上取得了显著提升,并提出了一种不增加模型大小且延迟开销小的块级权重共享方法。此外,MobileLLM模型家族在聊天基准测试中显示出与之前小型模型相比的显著改进,并在API调用任务中接近LLaMA-v2 7B的正确性,突出了小型模型在普通设备用例中的能力。
衡量语言模型回答事实性问题能力的基准测试
SimpleQA是OpenAI发布的一个事实性基准测试,旨在衡量语言模型回答简短、寻求事实的问题的能力。它通过提供高正确性、多样性、挑战性和良好的研究者体验的数据集,帮助评估和提升语言模型的准确性和可靠性。这个基准测试对于训练能够产生事实正确响应的模型是一个重要的进步,有助于提高模型的可信度,并拓宽其应用范围。
高质量音频生成框架
AudioLM是由Google Research开发的一个框架,用于高质量音频生成,具有长期一致性。它将输入音频映射到离散标记序列,并将音频生成视为这一表示空间中的语言建模任务。AudioLM通过在大量原始音频波形上训练,学习生成自然且连贯的音频续篇,即使在没有文本或注释的情况下,也能生成语法和语义上合理的语音续篇,同时保持说话者的身份和韵律。此外,AudioLM还能生成连贯的钢琴音乐续篇,尽管它在训练时没有使用任何音乐的符号表示。
高效并行音频生成技术
SoundStorm是由Google Research开发的一种音频生成技术,它通过并行生成音频令牌来大幅减少音频合成的时间。这项技术能够生成高质量、与语音和声学条件一致性高的音频,并且可以与文本到语义模型结合,控制说话内容、说话者声音和说话轮次,实现长文本的语音合成和自然对话的生成。SoundStorm的重要性在于它解决了传统自回归音频生成模型在处理长序列时推理速度慢的问题,提高了音频生成的效率和质量。
一站式在线音频工具
Audio Muse是一个提供一站式在线音频处理需求的平台,它拥有全面的音频工具集合,用户可以轻松使用。该产品以其易用性、多功能性和AI音乐创作功能而受到音乐爱好者和创作者的欢迎。它支持用户在线创建独特的背景音乐,选择不同的音乐风格、主题和情绪,利用人工智能技术生成无限音乐。产品背景信息显示,已有1.4K音乐爱好者在此汇聚,1K创作者在此生成了超过1.5K的音乐曲目。
视频到音乐生成框架,实现音视频内容的语义对齐和节奏同步。
MuVi是一个创新的框架,它通过分析视频内容提取与上下文和时间相关的特征,生成与视频情绪、主题、节奏和节奏相匹配的音乐。该框架引入了对比性音乐-视觉预训练方案,确保音乐短语的周期性同步,并展示了基于流匹配的音乐生成器具有上下文学习能力,允许控制生成音乐的风格和类型。MuVi在音频质量和时间同步方面展现出优越的性能,为音视频内容的融合和沉浸式体验提供了新的解决方案。
利用大型语言模型(LLM)进行创新研究的智能代理
CoI-Agent是一个基于大型语言模型(LLM)的智能代理,旨在通过链式思维(Chain of Ideas)的方式革新研究领域的新想法开发。该模型通过整合和分析大量数据,为研究人员提供创新的思路和研究方向。它的重要性在于能够加速科研进程,提高研究效率,帮助研究人员在复杂的数据中发现新的模式和联系。CoI-Agent由DAMO-NLP-SG团队开发,是一个开源项目,可以免费使用。
多模态语言模型,融合文本和语音
Spirit LM是一个基础多模态语言模型,能够自由混合文本和语音。该模型基于一个7B预训练的文本语言模型,通过持续在文本和语音单元上训练来扩展到语音模式。语音和文本序列被串联为单个令牌流,并使用一个小的自动策划的语音-文本平行语料库,采用词级交错方法进行训练。Spirit LM有两个版本:基础版使用语音音素单元(HuBERT),而表达版除了音素单元外,还使用音高和风格单元来模拟表达性。对于两个版本,文本都使用子词BPE令牌进行编码。该模型不仅展现了文本模型的语义能力,还展现了语音模型的表达能力。此外,我们展示了Spirit LM能够在少量样本的情况下跨模态学习新任务(例如ASR、TTS、语音分类)。
高效能小型语言模型
Zamba2-7B是由Zyphra团队开发的一款小型语言模型,它在7B规模上超越了当前领先的模型,如Mistral、Google的Gemma和Meta的Llama3系列,无论是在质量还是性能上。该模型专为在设备上和消费级GPU上运行以及需要强大但紧凑高效模型的众多企业应用而设计。Zamba2-7B的发布,展示了即使在7B规模上,前沿技术仍然可以被小团队和适度预算所触及和超越。
为复杂企业打造的AI工具
LLMWare.ai是一个为金融、法律、合规和监管密集型行业设计的AI工具,专注于私有云中的小型专业化语言模型和专为SLMs设计的AI框架。它提供了一个集成的、高质量的、组织良好的框架,用于开发AI代理工作流、检索增强生成(RAG)和其他用例的LLM应用程序,包括许多核心对象,以便开发者可以立即开始。
AI在医学领域的初步研究
o1 in Medicine是一个专注于医学领域的人工智能模型,旨在通过先进的语言模型技术,提升医学数据的处理能力和诊断准确性。该模型由UC Santa Cruz、University of Edinburgh和National Institutes of Health的研究人员共同开发,通过在多个医学数据集上的测试,展示了其在医学领域的应用潜力。o1模型的主要优点包括高准确率、多语言支持以及对复杂医学问题的深入理解能力。该模型的开发背景是基于当前医疗领域对于高效、准确的数据处理和分析的需求,尤其是在诊断和治疗建议方面。目前,该模型的研究和应用还处于初步阶段,但其在医学教育和临床实践中的应用前景广阔。
© 2024 AIbase 备案号:闽ICP备08105208号-14