需求人群:
"UbiOps适合需要快速、可靠和安全地运行AI和机器学习工作负载的团队。无论是初创企业还是大型组织的数据科学团队,UbiOps都能提供强大的支持。它特别适用于需要在私有环境中部署AI模型、需要动态扩展计算资源以及需要符合特定法规的企业。"
使用场景示例:
Reef Support使用UbiOps训练AI模型,进行珊瑚礁保护。
数字农业中实时工作负载的按需计算机视觉模型推理。
国家网络安全中心与UbiOps合作,创新数字安全的荷兰。
产品特色:
快速部署AI模型:在15分钟内部署模型和功能,从微调的LLMs到计算机视觉模型。
私有环境部署:在UbiOps项目中部署现成模型,并在私有基础设施上运行。
开箱即用的AI基础设施:无需DevOps经验即可在几分钟内运行第一个作业,管理多个AI工作负载。
安全和合规性设计:提供端到端加密、安全数据存储和访问控制,确保业务合规。
NVIDIA AI企业合作伙伴:提供最佳的基础设施和能力,帮助数据科学和AI团队运行和管理他们的AI工作负载。
动态扩展计算资源:根据使用情况动态扩展AI工作负载,加速模型训练和推理。
支持混合和多云环境:在私有或公共云环境中部署模型,优化成本、合规性和计算资源。
使用教程:
1. 访问UbiOps网站并注册账户。
2. 集成UbiOps到数据科学工作台,开始使用。
3. 选择要部署的AI模型或机器学习模型。
4. 配置模型的部署环境,包括计算资源和安全设置。
5. 部署模型并测试其功能。
6. 监控模型的性能和使用情况,根据需要进行调整。
7. 利用UbiOps的自动化扩展功能,应对工作负载的高峰。
浏览量:33
最新流量情况
月访问量
11.06k
平均访问时长
00:00:21
每次访问页数
1.87
跳出率
50.02%
流量来源
直接访问
38.89%
自然搜索
47.46%
邮件
0.09%
外链引荐
8.09%
社交媒体
4.73%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
德国
13.41%
英国
13.36%
印度
12.67%
荷兰
8.26%
美国
29.02%
AI模型服务与编排平台
UbiOps是一个AI基础设施平台,帮助团队快速运行他们的AI和机器学习工作负载作为可靠和安全的微服务,而无需改变现有的工作流程。它提供了零DevOps的超快速管道、优化的计算资源、支持LLMs和CV模型等功能。UbiOps支持混合和多云工作负载编排,允许在私有或公共云环境中部署模型,确保数据和模型始终留在用户的环境中。此外,UbiOps还提供了内置的安全特性,如端到端加密、安全数据存储和访问控制,帮助企业符合相关法规。
Google第六代张量处理单元,提供卓越的AI工作负载性能。
Trillium TPU是Google Cloud的第六代Tensor Processing Unit(TPU),专为AI工作负载设计,提供增强的性能和成本效益。它作为Google Cloud AI Hypercomputer的关键组件,通过集成的硬件系统、开放软件、领先的机器学习框架和灵活的消费模型,支持大规模AI模型的训练、微调和推理。Trillium TPU在性能、成本效率和可持续性方面都有显著提升,是AI领域的重要进步。
AI云平台,为所有人服务
Kalavai是一个AI云平台,旨在为所有人提供服务。它通过集成各种AI技术,使得用户能够构建、部署和运行AI应用。Kalavai平台的主要优点是其易用性和灵活性,用户无需深入了解复杂的AI技术,即可快速构建自己的AI应用。平台背景信息显示,它支持多种语言和框架,适合不同层次的开发者使用。目前,Kalavai提供免费试用,具体价格和定位需要进一步了解。
低成本按需GPU,为机器学习和AI任务即时启动
GPUDeploy是一个提供低成本按需GPU资源的网站,专为机器学习和人工智能任务设计,用户可以立即启动预配置的GPU实例,以支持复杂的计算任务。该产品主要优点包括低成本、即时可用性以及预配置的便利性,适合需要快速部署机器学习模型和算法的企业和个人。
通过音频扩散模型实现源分离和合成的创新方法。
Audio-SDS 是一个将 Score Distillation Sampling(SDS)概念应用于音频扩散模型的框架。该技术能够在不需要专门数据集的情况下,利用大型预训练模型进行多种音频任务,如物理引导的冲击声合成和基于提示的源分离。其主要优点在于通过一系列迭代优化,使得复杂的音频生成任务变得更为高效。此技术具有广泛的应用前景,能够为未来的音频生成和处理研究提供坚实基础。
智能文档处理AI平台,利用AI、机器学习和OCR技术自动化数据提取、分类和组织各种文档类型。
docsynecx是一款智能文档处理AI平台,通过AI、机器学习和OCR技术,自动化处理各种文档类型,包括发票处理、收据、提单等。该平台能够快速准确地提取、分类和组织结构化、半结构化和非结构化数据。
一款高质量的英语自动语音识别模型,支持标点符号和时间戳预测。
parakeet-tdt-0.6b-v2 是一个 600 百万参数的自动语音识别(ASR)模型,旨在实现高质量的英语转录,具有准确的时间戳预测和自动标点符号、大小写支持。该模型基于 FastConformer 架构,能够高效地处理长达 24 分钟的音频片段,适合开发者、研究人员和各行业应用。
一个统一的图像编辑模型,支持多种用户指令。
Step1X-Edit 是一种实用的通用图像编辑框架,利用 MLLMs 的图像理解能力解析编辑指令,生成编辑令牌,并通过 DiT 网络解码为图像。其重要性在于能够有效满足真实用户的编辑需求,提升了图像编辑的便捷性和灵活性。
轻量级嵌套架构,用于语音反欺诈。
Nes2Net 是一个为基础模型驱动的语音反欺诈任务设计的轻量级嵌套架构,具有较低的错误率,适用于音频深度假造检测。该模型在多个数据集上表现优异,预训练模型和代码已在 GitHub 上发布,便于研究人员和开发者使用。适合音频处理和安全领域,主要定位于提高语音识别和反欺诈的效率和准确性。
一个简单易用的语音克隆和语音模型训练工具。
EaseVoice Trainer 是一个后端项目,旨在简化和增强语音合成与转换训练过程。该项目基于 GPT-SoVITS 进行改进,注重用户体验和系统的可维护性。其设计理念不同于原始项目,旨在提供更模块化和定制化的解决方案,适用于从小规模实验到大规模生产的多种场景。该工具可以帮助开发者和研究人员更高效地进行语音合成和转换的研究与开发。
用于视频生成的下一帧预测模型。
FramePack 是一个创新的视频生成模型,旨在通过压缩输入帧的上下文来提高视频生成的质量和效率。其主要优点在于解决了视频生成中的漂移问题,通过双向采样方法保持视频质量,适合需要生成长视频的用户。该技术背景来源于对现有模型的深入研究和实验,以改进视频生成的稳定性和连贯性。
通过生成推理扩大过程奖励模型的测试时间计算。
GenPRM 是一种新兴的过程奖励模型(PRM),通过生成推理来提高在测试时的计算效率。这项技术能够在处理复杂任务时提供更准确的奖励评估,适用于多种机器学习和人工智能领域的应用。其主要优点是能够在资源有限的情况下优化模型性能,并在实际应用中降低计算成本。
昆仑万维开源的高性能数学代码推理模型,性能卓越
Skywork-OR1是由昆仑万维天工团队开发的高性能数学代码推理模型。该模型系列在同等参数规模下实现了业界领先的推理性能,突破了大模型在逻辑理解与复杂任务求解方面的能力瓶颈。Skywork-OR1系列包括Skywork-OR1-Math-7B、Skywork-OR1-7B-Preview和Skywork-OR1-32B-Preview三款模型,分别聚焦数学推理、通用推理和高性能推理任务。此次开源不仅涵盖模型权重,还全面开放了训练数据集和完整训练代码,所有资源均已上传至GitHub和Huggingface平台,为AI社区提供了完全可复现的实践参考。这种全方位的开源策略有助于推动整个AI社区在推理能力研究上的共同进步。
Pusa 是一个新颖的视频扩散模型,支持多种视频生成任务。
Pusa 通过帧级噪声控制引入视频扩散建模的创新方法,能够实现高质量的视频生成,适用于多种视频生成任务(文本到视频、图像到视频等)。该模型以其卓越的运动保真度和高效的训练过程,提供了一个开源的解决方案,方便用户进行视频生成任务。
Dream 7B 是最强大的开放扩散大语言模型。
Dream 7B 是由香港大学 NLP 组和华为诺亚方舟实验室联合推出的最新扩散大语言模型。它在文本生成领域展现了优异的性能,特别是在复杂推理、长期规划和上下文连贯性等方面。该模型采用了先进的训练方法,具有强大的计划能力和灵活的推理能力,为各类 AI 应用提供了更为强大的支持。
一个针对机器学习优化的多模态 OCR 管道。
该产品是一个专门设计的 OCR 系统,旨在从复杂的教育材料中提取结构化数据,支持多语言文本、数学公式、表格和图表,能够生成适用于机器学习训练的高质量数据集。该系统利用多种技术和 API,能够提供高精度的提取结果,适合学术研究和教育工作者使用。
一款为 AI/ML 模型监控和管理而设计的工具。
Arthur Engine 是一个旨在监控和治理 AI/ML 工作负载的工具,利用流行的开源技术和框架。该产品的企业版提供更好的性能和额外功能,如自定义的企业级防护机制和指标,旨在最大化 AI 对组织的潜力。它能够有效评估和优化模型,确保数据安全与合规。
一个强大的文本生成模型,适用于多种对话应用。
DeepSeek-V3-0324 是一个先进的文本生成模型,具有 685 亿参数,采用 BF16 和 F32 张量类型,能够支持高效的推理和文本生成。该模型的主要优点在于其强大的生成能力和开放源码的特性,使其可以被广泛应用于多种自然语言处理任务。该模型的定位是为开发者和研究人员提供一个强大的工具,帮助他们在文本生成领域取得突破。
RF-DETR 是由 Roboflow 开发的实时目标检测模型。
RF-DETR 是一个基于变压器的实时目标检测模型,旨在为边缘设备提供高精度和实时性能。它在 Microsoft COCO 基准测试中超过了 60 AP,具有竞争力的性能和快速的推理速度,适合各种实际应用场景。RF-DETR 旨在解决现实世界中的物体检测问题,适用于需要高效且准确检测的行业,如安防、自动驾驶和智能监控等。
高保真可动画 3D 人类重建模型,快速生成动画角色。
LHM(大规模可动画人类重建模型)利用多模态变压器架构进行高保真 3D 头像重建,支持从单张图像生成可动画的 3D 人类形象。该模型能够详细保留服装几何和纹理,尤其是在面部身份和细节恢复方面表现优异,适合对 3D 重建精度有较高要求的应用场景。
Pruna 是一个模型优化框架,帮助开发者快速高效交付模型。
Pruna 是一个为开发者设计的模型优化框架,通过一系列压缩算法,如量化、修剪和编译等技术,使得机器学习模型在推理时更快、体积更小且计算成本更低。产品适用于多种模型类型,包括 LLMs、视觉转换器等,且支持 Linux、MacOS 和 Windows 等多个平台。Pruna 还提供了企业版 Pruna Pro,解锁更多高级优化功能和优先支持,助力用户在实际应用中提高效率。
SpatialLM 是一个用于空间理解的大语言模型。
SpatialLM 是一个专为处理 3D 点云数据设计的大型语言模型,能够生成结构化的 3D 场景理解输出,包括建筑元素和对象的语义类别。它能够从单目视频序列、RGBD 图像和 LiDAR 传感器等多种来源处理点云数据,无需专用设备。SpatialLM 在自主导航和复杂 3D 场景分析任务中具有重要应用价值,显著提升空间推理能力。
一个开源文本转语音系统,致力于实现人类语音的自然化。
Orpheus TTS 是一个基于 Llama-3b 模型的开源文本转语音系统,旨在提供更加自然的人类语音合成。它具备较强的语音克隆能力和情感表达能力,适合各种实时应用场景。该产品是免费的,旨在为开发者和研究者提供便捷的语音合成工具。
WoolyAI 是一种通过解耦 CUDA 执行与 GPU 来实现无限制 AI 基础设施管理的技术。
WoolyAI 是一种创新的 AI 基础设施管理技术,通过其核心产品 WoolyStack,实现了将 CUDA 执行从 GPU 解耦,从而打破了传统 GPU 资源管理的限制。该技术允许用户在 CPU 基础设施上运行 Pytorch 应用,并通过 Wooly 运行时库将计算任务动态分配到远程 GPU 资源。这种架构不仅提高了资源利用率,还降低了成本,并增强了隐私和安全性。其主要面向需要高效 GPU 资源管理的企业和开发者,尤其是在云计算和 AI 开发场景中。
为Firefox浏览器翻译功能优化的CPU加速神经机器翻译模型。
Firefox Translations Models 是由Mozilla开发的一组CPU优化的神经机器翻译模型,专为Firefox浏览器的翻译功能设计。该模型通过高效的CPU加速技术,提供快速且准确的翻译服务,支持多种语言对。其主要优点包括高性能、低延迟和对多种语言的支持。该模型是Firefox浏览器翻译功能的核心技术,为用户提供无缝的网页翻译体验。
基于 Gemini 的 Colab 数据科学助手,可自动生成完整的 Colab 笔记本代码。
Data Science Agent in Colab 是 Google 推出的一款基于 Gemini 的智能工具,旨在简化数据科学工作流程。它通过自然语言描述自动生成完整的 Colab 笔记本代码,涵盖数据导入、分析和可视化等任务。该工具的主要优点是节省时间、提高效率,并且生成的代码可修改和共享。它面向数据科学家、研究人员和开发者,尤其是那些希望快速从数据中获取洞察的用户。目前该工具免费提供给符合条件的用户。
SkyPilot RAG 是一个基于 SkyPilot 的检索增强生成系统,用于处理大规模法律文档搜索和分析。
SkyPilot RAG 是一个结合了向量搜索和大型语言模型的检索增强生成系统。它通过语义搜索和智能问答,为法律专业人士提供高效的信息检索和分析工具。该系统基于 SkyPilot 构建,能够管理基础设施并高效利用计算资源,支持在任何云环境或 Kubernetes 上部署。其主要优点包括高准确性、上下文感知能力和可追溯性,能够显著提高法律文档处理的效率和可靠性。
3FS是一个高性能分布式文件系统,专为AI训练和推理工作负载设计。
3FS是一个专为AI训练和推理工作负载设计的高性能分布式文件系统。它利用现代SSD和RDMA网络,提供共享存储层,简化分布式应用开发。其核心优势在于高性能、强一致性和对多种工作负载的支持,能够显著提升AI开发和部署的效率。该系统适用于大规模AI项目,尤其在数据准备、训练和推理阶段表现出色。
提供全球最便宜的GPU云服务,助力自托管AI/ML开发。
Thunder Compute是一个专注于AI/ML开发的GPU云服务平台,通过虚拟化技术,帮助用户以极低的成本使用高性能GPU资源。其主要优点是价格低廉,相比传统云服务提供商可节省高达80%的成本。该平台支持多种主流GPU型号,如NVIDIA Tesla T4、A100等,并提供7+ Gbps的网络连接,确保数据传输的高效性。Thunder Compute的目标是为AI开发者和企业降低硬件成本,加速模型训练和部署,推动AI技术的普及和应用。
olmOCR是一个用于将PDF线性化以用于LLM数据集训练的工具包。
olmOCR是由Allen Institute for Artificial Intelligence (AI2)开发的一个开源工具包,旨在将PDF文档线性化,以便用于大型语言模型(LLM)的训练。该工具包通过将PDF文档转换为适合LLM处理的格式,解决了传统PDF文档结构复杂、难以直接用于模型训练的问题。它支持多种功能,包括自然文本解析、多版本比较、语言过滤和SEO垃圾信息移除等。olmOCR的主要优点是能够高效处理大量PDF文档,并通过优化的提示策略和模型微调,提高文本解析的准确性和效率。该工具包适用于需要处理大量PDF数据的研究人员和开发者,尤其是在自然语言处理和机器学习领域。
© 2025 AIbase 备案号:闽ICP备08105208号-14