需求人群:
"目标受众为需要制作演示文档的个人和企业用户,包括但不限于商务人士、教育工作者、设计师等。Pi-智能演示文档通过提供丰富的设计元素和AI智能工具,帮助用户快速创建专业且吸引人的演示文档,适合快节奏工作环境中的演示需求。"
使用场景示例:
商务会议中使用Pi快速制作并分享市场分析报告。
教育领域中,教师利用Pi制作互动式教学课件。
企业内部培训中,使用Pi创建结构化的培训材料。
产品特色:
- 丰富的设计元素:提供数百万张精美图片和视频,Smart Art智能推荐。
- 对话角色:虚拟IP或头像可以秒速开口说话,扮演用户喜欢的角色。
- AI智能:生成优雅结构化的内容,使用多模态模型构建设计。
- 知识引擎:轻松整合笔记、PDF、网页、图片、视频和数据,创建任何格式的内容。
- 经典主题:提供数百万张精美图片和视频,智能推荐。
- 多样的设计灵感:提供从严谨学术到可爱的不同风格。
- Convenient tools & platform:使用AI生成美观的PPT,选择或自定义PPT的主题。
- 个性化和搜索功能:上传自己的图片实现个性化,搜索可用于PPT的图片。
- AI生成图片:提升内容吸引力,轻松共享演示文稿。
使用教程:
1. 访问Pi-智能演示文档网站并登录。
2. 选择或自定义PPT的主题,开始创建新的演示文档。
3. 利用AI智能工具,整合笔记、PDF、网页等资料。
4. 通过Smart Art智能推荐,选择合适的图片和视频素材。
5. 使用对话角色功能,让虚拟IP或头像为你的演示文档增添互动性。
6. 利用知识引擎,轻松整合各种格式的内容。
7. 个性化你的演示文档,上传自己的图片或使用AI生成的图片。
8. 完成制作后,使用平台的共享功能,将演示文稿分享给团队或客户。
浏览量:234
最新流量情况
月访问量
3810
平均访问时长
00:10:49
每次访问页数
8.94
跳出率
22.19%
流量来源
直接访问
36.73%
自然搜索
2.45%
邮件
0.05%
外链引荐
59.73%
社交媒体
0.86%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
100.00%
AI驱动的演示文档制作平台
Pi-智能演示文档是一个利用AI技术,提供丰富设计元素和多模态模型构建设计的演示文档制作平台。它能够整合用户的笔记、PDF、网页、图片、视频和数据,创建任何格式的内容。产品背景信息显示,Pi旨在通过AI智能和知识引擎,为用户提供优雅结构化的内容生成和设计灵感,适合需要制作演示文档的用户。产品定位于提高演示文档的制作效率和质量,价格信息未在页面中明确提供。
MinMo是一款多模态大型语言模型,用于无缝语音交互。
MinMo是阿里巴巴集团通义实验室开发的一款多模态大型语言模型,拥有约80亿参数,专注于实现无缝语音交互。它通过多个阶段的训练,包括语音到文本对齐、文本到语音对齐、语音到语音对齐和全双工交互对齐,在140万小时的多样化语音数据和广泛的语音任务上进行训练。MinMo在语音理解和生成的各种基准测试中达到了最先进的性能,同时保持了文本大型语言模型的能力,并支持全双工对话,即用户和系统之间的同时双向通信。此外,MinMo还提出了一种新颖且简单的语音解码器,在语音生成方面超越了以往的模型。MinMo的指令遵循能力得到了增强,支持根据用户指令控制语音生成,包括情感、方言和语速等细节,并模仿特定的声音。MinMo的语音到文本延迟约为100毫秒,全双工延迟理论上约为600毫秒,实际约为800毫秒。MinMo的开发旨在克服以往对齐多模态模型的主要限制,为用户提供更自然、流畅和人性化的语音交互体验。
MiniCPM-o 2.6是一个强大的多模态大型语言模型,适用于视觉、语音和多模态直播。
MiniCPM-o 2.6是MiniCPM-o系列中最新且功能最强大的模型。该模型基于SigLip-400M、Whisper-medium-300M、ChatTTS-200M和Qwen2.5-7B构建,拥有8B参数。它在视觉理解、语音交互和多模态直播方面表现出色,支持实时语音对话和多模态直播功能。该模型在开源社区中表现优异,超越了多个知名模型。其优势在于高效的推理速度、低延迟、低内存和功耗,能够在iPad等终端设备上高效支持多模态直播。此外,MiniCPM-o 2.6易于使用,支持多种使用方式,包括llama.cpp的CPU推理、int4和GGUF格式的量化模型、vLLM的高吞吐量推理等。
MiniCPM-o 2.6:一款GPT-4o级别,可在手机上实现视觉、语音和多模态直播的MLLM。
MiniCPM-o 2.6 是OpenBMB团队开发的最新多模态大型语言模型(MLLM),具有8B参数,能够在手机等端侧设备上实现高质量的视觉、语音和多模态直播功能。该模型基于SigLip-400M、Whisper-medium-300M、ChatTTS-200M和Qwen2.5-7B构建,采用端到端的方式训练,性能与GPT-4o-202405相当。其主要优点包括领先的视觉能力、先进的语音能力、强大的多模态直播能力、强大的OCR能力以及优越的效率。该模型免费开源,适用于学术研究和商业用途。
全能AI工作空间,实时语音助手搭配多模态画布,助力高效创作与思考。
Albus AI是一个由人工智能驱动的平台,旨在为知识和创意专业人士提供高效的工作空间。通过实时语音助手和多模态画布,用户可以快速处理大量信息,激发新想法,节省宝贵的时间和注意力。该平台利用大型语言模型和机器学习服务,能够连接不同思想,避免用户在多个标签和应用之间来回切换。Albus AI的出现,为创意工作者、记者、研究人员等专业人士提供了强大的辅助工具,帮助他们更好地发挥人类智慧,为社会创造价值。目前,Albus AI提供有限的早期访问价格,订阅价格为9美元。
开源的视觉语言模型,可在多种设备上运行。
Moondream AI是一个开源的视觉语言模型,具有强大的多模态处理能力。它支持多种量化格式,如fp16、int8、int4,能够在服务器、PC、移动设备等多种目标设备上进行GPU和CPU优化推理。其主要优点包括快速、高效、易于部署,且采用Apache 2.0许可证,允许用户自由使用和修改。Moondream AI的定位是为开发者提供一个灵活、高效的人工智能解决方案,适用于需要视觉和语言处理能力的各种应用场景。
InternVL2.5-MPO系列模型,基于InternVL2.5和混合偏好优化,展现卓越性能。
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化(MPO)构建。该系列模型在多模态任务中表现出色,能够处理图像、文本和视频数据,并生成高质量的文本响应。模型采用'ViT-MLP-LLM'范式,通过像素unshuffle操作和动态分辨率策略优化视觉处理能力。此外,模型还引入了多图像和视频数据的支持,进一步扩展了其应用场景。InternVL2.5-MPO在多模态能力评估中超越了多个基准模型,证明了其在多模态领域的领先地位。
先进的多模态大型语言模型,具备卓越的多模态推理能力。
InternVL2_5-26B-MPO-AWQ 是由 OpenGVLab 开发的多模态大型语言模型,旨在通过混合偏好优化提升模型的推理能力。该模型在多模态任务中表现出色,能够处理图像和文本之间的复杂关系。它采用了先进的模型架构和优化技术,使其在多模态数据处理方面具有显著优势。该模型适用于需要高效处理和理解多模态数据的场景,如图像描述生成、多模态问答等。其主要优点包括强大的推理能力和高效的模型架构。
AI驱动的网站设计、开发与管理服务
Wegic是一个创新的AI驱动的网站开发平台,旨在通过对话式交互简化网站设计、开发和管理过程。它利用最新的GPT-4o模型,能够在短时间内为用户提供高质量的多页面网站。Wegic的主要优点在于其易用性,即使是没有任何编程背景的用户也能轻松创建和维护网站。此外,Wegic还提供了丰富的设计模板和灵活的定制选项,满足不同用户的需求。其背景信息显示,该产品旨在解决传统网站开发过程中耗时、复杂的问题,通过AI技术提升效率和用户体验。Wegic的定位是为个人、小型企业和创意工作者提供一种简单、快捷的网站创建解决方案。
基于孪生多模态扩散变换器的创意布局到图像生成技术
CreatiLayout是一种创新的布局到图像生成技术,利用孪生多模态扩散变换器(Siamese Multimodal Diffusion Transformer)来实现高质量和细粒度可控的图像生成。该技术能够精确渲染复杂的属性,如颜色、纹理、形状、数量和文本,适用于需要精确布局和图像生成的应用场景。其主要优点包括高效的布局引导集成、强大的图像生成能力和大规模数据集的支持。CreatiLayout由复旦大学和字节跳动公司联合开发,旨在推动图像生成技术在创意设计领域的应用。
VITA-1.5: 实时视觉和语音交互的GPT-4o级多模态大语言模型
VITA-1.5 是一款开源的多模态大语言模型,旨在实现接近实时的视觉和语音交互。它通过显著降低交互延迟和提升多模态性能,为用户提供更流畅的交互体验。该模型支持英语和中文,适用于多种应用场景,如图像识别、语音识别和自然语言处理等。其主要优点包括高效的语音处理能力和强大的多模态理解能力。
一个用于信息检索和生成的灵活高性能框架
FlexRAG是一个用于检索增强生成(RAG)任务的灵活且高性能的框架。它支持多模态数据、无缝配置管理和开箱即用的性能,适用于研究和原型开发。该框架使用Python编写,具有轻量级和高性能的特点,能够显著提高RAG工作流的速度和减少延迟。其主要优点包括支持多种数据类型、统一的配置管理以及易于集成和扩展。
多模态大型语言模型,提升视觉与语言的交互能力。
InternVL2_5-26B-MPO是一个多模态大型语言模型(MLLM),它在InternVL2.5的基础上,通过混合偏好优化(Mixed Preference Optimization, MPO)进一步提升了模型性能。该模型能够处理包括图像、文本在内的多模态数据,广泛应用于图像描述、视觉问答等场景。它的重要性在于能够理解和生成与图像内容紧密相关的文本,推动了多模态人工智能的边界。产品背景信息包括其在多模态任务中的卓越性能,以及在OpenCompass Learderboard中的评估结果。该模型为研究者和开发者提供了强大的工具,以探索和实现多模态人工智能的潜力。
多模态大型语言模型,提升视觉与语言的交互能力
InternVL2_5-8B-MPO-AWQ是OpenGVLab推出的一款多模态大型语言模型,它基于InternVL2.5系列,并采用混合偏好优化(Mixed Preference Optimization, MPO)技术。该模型在视觉和语言的理解与生成方面展现了卓越的性能,尤其在多模态任务中表现出色。它通过结合视觉部分InternViT和语言部分InternLM或Qwen,使用随机初始化的MLP投影器进行增量预训练,实现了对图像和文本的深入理解与交互。该技术的重要性在于它能够处理包括单图像、多图像以及视频数据在内的多种数据类型,为多模态人工智能领域提供了新的解决方案。
多模态大型语言模型,展示卓越的整体性能。
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,它基于InternVL2.5和混合偏好优化构建。该模型整合了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在新版本中保留了与InternVL 2.5及其前身相同的模型架构,遵循“ViT-MLP-LLM”范式。该模型支持多图像和视频数据,通过混合偏好优化(MPO)进一步提升模型性能,使其在多模态任务中表现更优。
定制化漫画生成模型,连接多模态LLMs和扩散模型。
DiffSensei是一个结合了多模态大型语言模型(LLMs)和扩散模型的定制化漫画生成模型。它能够根据用户提供的文本提示和角色图像,生成可控制的黑白漫画面板,并具有灵活的角色适应性。这项技术的重要性在于它将自然语言处理与图像生成相结合,为漫画创作和个性化内容生成提供了新的可能性。DiffSensei模型以其高质量的图像生成、多样化的应用场景以及对资源的高效利用而受到关注。目前,该模型在GitHub上公开,可以免费下载使用,但具体的使用可能需要一定的计算资源。
多模态大型语言模型,优化图像与文本交互能力
InternVL2_5-4B-MPO-AWQ是一个多模态大型语言模型(MLLM),专注于提升模型在图像和文本交互任务中的表现。该模型基于InternVL2.5系列,并通过混合偏好优化(MPO)进一步提升性能。它能够处理包括单图像和多图像、视频数据在内的多种输入,适用于需要图像和文本交互理解的复杂任务。InternVL2_5-4B-MPO-AWQ以其卓越的多模态能力,为图像-文本到文本的任务提供了一个强大的解决方案。
开源的端到端自动驾驶多模态模型
OpenEMMA是一个开源项目,复现了Waymo的EMMA模型,提供了一个端到端框架用于自动驾驶车辆的运动规划。该模型利用预训练的视觉语言模型(VLMs)如GPT-4和LLaVA,整合文本和前视摄像头输入,实现对未来自身路径点的精确预测,并提供决策理由。OpenEMMA的目标是为研究人员和开发者提供易于获取的工具,以推进自动驾驶研究和应用。
利用人工智能轻松设计专业定制Logo。
Slea.ai免费AI Logo生成器是一款基于人工智能技术的在线Logo设计工具,它能够根据用户提供的Logo名称、核心元素和行业信息快速生成专业Logo设计。这款工具以其快速、高效、可定制化的特点,帮助用户无需设计背景也能创造出符合品牌形象的Logo。Slea.ai AI Logo生成器支持高清无水印下载,适用于多种场合,如社交媒体头像、名片设计、高质量打印Logo等。
多模态大型语言模型,展示卓越的整体性能
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化构建。该模型集成了新增量预训练的InternViT和各种预训练的大型语言模型,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。它支持多图像和视频数据,并且在多模态任务中表现出色,能够理解和生成与图像相关的文本内容。
多模态大型语言模型,提升文本、图像和视频数据处理能力。
Valley是由字节跳动开发的多模态大型模型(MLLM),旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,远超过其他开源模型,并在OpenCompass多模态模型评估排行榜上展现了出色的性能,平均得分67.40,位列已知开源MLLMs(<10B)中的前两名。
多模态大型模型,处理文本、图像和视频数据
Valley-Eagle-7B是由字节跳动开发的多模态大型模型,旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,并在OpenCompass测试中展现出与同规模模型相比的卓越性能。Valley-Eagle-7B结合了LargeMLP和ConvAdapter构建投影器,并引入了VisionEncoder,以增强模型在极端场景下的性能。
多模态大型模型,处理文本、图像和视频数据
Valley是由字节跳动开发的尖端多模态大型模型,能够处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,比其他开源模型表现更优。在OpenCompass测试中,与同规模模型相比,平均得分大于等于67.40,在小于10B模型中排名第二。Valley-Eagle版本参考了Eagle,引入了一个可以灵活调整令牌数量并与原始视觉令牌并行的视觉编码器,增强了模型在极端场景下的性能。
探索多模态扩散变换器中的注意力控制,实现无需调优的多提示长视频生成
DiTCtrl是一种基于多模态扩散变换器(MM-DiT)架构的视频生成模型,它专注于无需额外训练即可生成具有多个连续提示的连贯场景视频。该模型通过分析MM-DiT的注意力机制,实现了在不同提示间精确的语义控制和注意力共享,从而生成具有平滑过渡和一致对象运动的视频。DiTCtrl的主要优点包括无需训练、能够处理多提示视频生成任务,并能展示电影风格的过渡效果。此外,DiTCtrl还提供了一个新基准MPVBench,专门用于评估多提示视频生成的性能。
一站式大模型算法、模型及优化工具开源项目
FlagAI是由北京智源人工智能研究院推出的一站式、高质量开源项目,集成了全球各种主流大模型算法技术以及多种大模型并行处理和训练加速技术。它支持高效训练和微调,旨在降低大模型开发和应用的门槛,提高开发效率。FlagAI涵盖了多个领域明星模型,如语言大模型OPT、T5,视觉大模型ViT、Swin Transformer,多模态大模型CLIP等。智源研究院也持续将“悟道2.0”“悟道3.0”大模型项目成果开源至FlagAI,目前该项目已经加入Linux基金会,吸引全球科研力量共同创新、共同贡献。
基于现实世界的首个生成式AI产品
PhotoG是一个基于现实世界的生成式AI平台,它允许用户将任何物品放置到任何场景中,提供个性化定制和广泛的商品选择。PhotoG的技术优势在于实时控制和即时结果,能够100%准确地复制场景,无论是买家还是卖家,都能在任何上下文中可视化产品。该产品起源于开源社区孵化器AID Lab,由来自同济大学、清华大学和UCL等世界前30名QS大学的顶尖团队开发,超过90%的团队成员持有高级学位。PhotoG的目标是将这项技术带给全球数十亿人,并通过持续创新改善生活。
先进的多模态大型语言模型
InternVL2_5-2B-MPO是一个多模态大型语言模型系列,展示了卓越的整体性能。该系列基于InternVL2.5和混合偏好优化构建。它集成了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型在多模态任务中表现出色,能够处理包括图像和文本在内的多种数据类型,适用于需要理解和生成多模态内容的场景。
多模态大型语言模型,提升视觉和语言的综合理解能力
InternVL2_5-1B-MPO是一个多模态大型语言模型(MLLM),它基于InternVL2.5和混合偏好优化(MPO)构建,展示了优越的整体性能。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在模型架构上保留了与InternVL 2.5及其前身相同的“ViT-MLP-LLM”范式,并引入了对多图像和视频数据的支持。该模型在多模态任务中表现出色,能够处理包括图像描述、视觉问答等多种视觉语言任务。
© 2024 AIbase 备案号:闽ICP备08105208号-14