需求人群:
["适用于需要生成具有特定身份特征的AI肖像和广告图像的场景","适合研究人员和开发者在图像生成领域进行创新和实验","对于希望提高文本到图像生成质量的企业和开发者来说,ID-Aligner提供了一种有效的解决方案"]
使用场景示例:
在AI肖像生成中,使用ID-Aligner生成与参考肖像身份特征一致的图像
在广告设计中,利用ID-Aligner生成既保留身份特征又具有审美吸引力的广告图像
在图像生成研究中,使用ID-Aligner作为实验框架,探索不同反馈学习策略对生成效果的影响
产品特色:
利用面部检测和识别模型进行身份特征保持
通过人类标注偏好数据进行审美调整
自动构建反馈用于角色结构生成的审美调整
适用于LoRA和Adapter模型
通过反馈学习框架提高身份保留和审美吸引力
在SD1.5和SDXL扩散模型上进行了广泛的实验验证
使用教程:
步骤1: 准备文本描述和参考肖像图像
步骤2: 使用ID-Aligner的面部检测和识别模型进行初步的身份特征保持
步骤3: 根据人类标注的偏好数据和自动构建的反馈,进行审美调整
步骤4: 选择LoRA或Adapter模型进行应用
步骤5: 通过反馈学习框架进行身份和审美特征的微调
步骤6: 在SD1.5或SDXL扩散模型上进行实验,验证生成效果
步骤7: 根据实验结果,进一步优化模型参数和反馈学习策略
浏览量:60
一种用于增强身份保留文本到图像生成的反馈学习框架
ID-Aligner 是一种用于增强身份保留文本到图像生成的反馈学习框架,它通过奖励反馈学习来解决身份特征保持、生成图像的审美吸引力以及与LoRA和Adapter方法的兼容性问题。该方法利用面部检测和识别模型的反馈来提高生成的身份保留,并通过人类标注偏好数据和自动构建的反馈来提供审美调整信号。ID-Aligner 适用于LoRA和Adapter模型,通过广泛的实验验证了其有效性。
文本到图像生成中风格保留的 InstantStyle。
InstantStyle 是一个通用框架,利用两种简单但强大的技术,实现对参考图像中风格和内容的有效分离。其原则包括将内容从图像中分离出来、仅注入到风格块中,并提供样式风格的合成和图像生成等功能。InstantStyle 可以帮助用户在文本到图像生成过程中保持风格,为用户提供更好的生成体验。
秒速零拍照生成身份保留
InstantID是一种基于强大扩散模型的解决方案,能够在各种风格下使用单张面部图像进行图像个性化处理,同时确保高保真度。我们设计了一个新颖的IdentityNet,通过施加强大的语义和弱空间条件,将面部和地标图像与文本提示集成,引导图像生成。InstantID在实际应用中表现出色,并且能够与流行的预训练文本到图像扩散模型(如SD1.5和SDXL)无缝集成,作为一个可适配的插件。我们的代码和预训练检查点将在此URL上提供。
图像序列着色模型,保留细粒度身份信息
ColorFlow是一个为图像序列着色而设计的模型,特别注重在着色过程中保留角色和对象的身份信息。该模型利用上下文信息,能够根据参考图像池为黑白图像序列中的不同元素(如角色的头发和服装)准确生成颜色,并确保与参考图像的颜色一致性。ColorFlow通过三个阶段的扩散模型框架,提出了一种新颖的检索增强着色流程,无需每个身份的微调或显式身份嵌入提取,即可实现具有相关颜色参考的图像着色。ColorFlow的主要优点包括其在保留身份信息的同时,还能提供高质量的着色效果,这对于卡通或漫画系列的着色具有重要的市场价值。
高质量身份保留的人像动画合成工具。
StableAnimator是首个端到端身份保留的视频扩散框架,能够在不进行后处理的情况下合成高质量视频。该技术通过参考图像和一系列姿势进行条件合成,确保了身份一致性。其主要优点在于无需依赖第三方工具,适合需要高质量人像动画的用户。
开源文本到图像生成模型
AuraFlow v0.3是一个完全开源的基于流的文本到图像生成模型。与之前的版本AuraFlow-v0.2相比,该模型经过了更多的计算训练,并在美学数据集上进行了微调,支持各种宽高比,宽度和高度可达1536像素。该模型在GenEval上取得了最先进的结果,目前处于beta测试阶段,正在不断改进中,社区反馈非常重要。
基于频率分解的身份保持文本到视频生成模型
ConsisID是一个基于频率分解的身份保持文本到视频生成模型,它通过在频域中使用身份控制信号来生成与输入文本描述一致的高保真度视频。该模型不需要针对不同案例进行繁琐的微调,并且能够保持生成视频中人物身份的一致性。ConsisID的提出,推动了视频生成技术的发展,特别是在无需调整的流程和频率感知的身份保持控制方案方面。
先进的文本到图像生成系统
Stable Diffusion 3是一款先进的文本到图像生成系统,它在排版和提示遵循方面与DALL-E 3和Midjourney v6等顶尖系统相匹敌或更优。该系统采用新的多模态扩散变换器(MMDiT)架构,使用不同的权重集来改善图像和语言的表示,从而提高文本理解和拼写能力。Stable Diffusion 3 API现已在Stability AI开发者平台上线,与Fireworks AI合作提供快速可靠的API服务,并承诺在不久的将来通过Stability AI会员资格开放模型权重以供自托管。
AI文本到图像生成工具
NeutronField是一款AI文本到图像生成工具,通过输入文字描述,即可生成对应的图像。它具有稳定的扩散算法,能够生成高质量的图像作品。NeutronField的主要功能包括根据文本生成图像、展示AI文本到图像的作品、购买和出售AI文本到图像的作品等。它的优势在于能够快速生成多样化的图像作品,满足用户的个性化需求。NeutronField的定价根据作品的复杂程度和独特性而定,用户可以根据自己的需求选择合适的作品进行购买。NeutronField定位于为用户提供便捷、高效的AI文本到图像生成服务。
开源的文本到图像生成模型
OpenFLUX.1是一个基于FLUX.1-schnell模型的微调版本,移除了蒸馏过程,使其可以进行微调,并且拥有开源、宽松的许可证Apache 2.0。该模型能够生成令人惊叹的图像,并且只需1-4步即可完成。它是一个尝试去除蒸馏过程,创建一个可以微调的开源许可模型。
高效能的文本到图像生成模型
SDXL Flash是由SD社区与Project Fluently合作推出的文本到图像生成模型。它在保持生成图像质量的同时,提供了比LCM、Turbo、Lightning和Hyper更快的处理速度。该模型基于Stable Diffusion XL技术,通过优化步骤和CFG(Guidance)参数,实现了图像生成的高效率和高质量。
控制文本到图像生成过程
FreeControl是一个无需训练就可以实现对文本到图像生成过程的可控制的方法。它支持对多种条件、架构和检查点的同时控制。FreeControl通过结构指导实现与指导图像的结构对齐,通过外观指导实现使用相同种子的生成图像之间的外观共享。FreeControl包含分析阶段和合成阶段。在分析阶段,FreeControl查询文本到图像模型生成少量种子图像,然后从生成的图像构建线性特征子空间。在合成阶段,FreeControl在子空间中运用指导实现与指导图像的结构对齐,以及使用与不使用控制的生成图像之间的外观对齐。
生成高质量逼真图像的文本到图像技术
Imagen 2 是我们最先进的文本到图像扩散技术,可生成与用户提示密切对齐且一致的高质量逼真图像。它通过使用训练数据的自然分布生成更加逼真的图像,而不是采用预先编程的风格。Imagen 2 强大的文本到图像技术通过 Google Cloud Vertex AI 的 Imagen API 为开发者和云客户提供支持。Google Arts and Culture 团队还在其文化标志实验中部署了我们的 Imagen 2 技术,使用户可以通过 Google AI 探索、学习和测试其文化知识。
高度写实的文本到图像模型
Deep floyd是一个开源的文本到图像模型,具有高度的写实性和语言理解能力。它由一个冻结的文本编码器和三个级联的像素扩散模块组成:一个基础模型用于根据文本提示生成 64x64 像素的图像,以及两个超分辨率模型,分别用于生成分辨率逐渐增加的图像:256x256 像素和 1024x1024 像素。模型的所有阶段都利用基于 T5 transformer 的冻结文本编码器来提取文本嵌入,然后将其输入到一个增强了交叉注意力和注意力池化的 UNet 架构中。这个高效的模型在性能上超过了当前的最先进模型,在 COCO 数据集上实现了零样本 FID 得分为 6.66。我们的工作强调了级联扩散模型的第一阶段中更大的 UNet 架构的潜力,并展示了文本到图像合成的一个有前途的未来。
12亿参数的文本到图像生成模型
FLUX.1-dev是一个拥有12亿参数的修正流变换器,能够根据文本描述生成图像。它代表了文本到图像生成技术的最新发展,具有先进的输出质量,仅次于其专业版模型FLUX.1 [pro]。该模型通过指导蒸馏训练,提高了效率,并且开放权重以推动新的科学研究,并赋予艺术家开发创新工作流程的能力。生成的输出可以用于个人、科学和商业目的,具体如flux-1-dev-non-commercial-license所述。
基于ControlNet的文本到图像生成模型
flux-controlnet-canny是由XLabs AI团队开发的基于FLUX.1-dev模型的ControlNet Canny模型,用于文本到图像的生成。该模型通过训练,能够根据文本提示生成高质量的图像,广泛应用于创意设计和视觉艺术领域。
基于Transformer的通用领域文本到图像生成
CogView是一个用于通用领域文本到图像生成的预训练Transformer模型。该模型包含410亿参数,能够生成高质量、多样化的图像。模型的训练思路采用抽象到具体的方式,先 pretrain 获得通用知识,然后 finetune 在特定域生成图像,能显著提升生成质量。值得一提的是,论文还提出了两种帮助大模型稳定训练的技巧:PB-relax 和 Sandwich-LN。
自适应条件选择,提升文本到图像生成控制力
DynamicControl是一个用于提升文本到图像扩散模型控制力的框架。它通过动态组合多样的控制信号,支持自适应选择不同数量和类型的条件,以更可靠和详细地合成图像。该框架首先使用双循环控制器,利用预训练的条件生成模型和判别模型,为所有输入条件生成初始真实分数排序。然后,通过多模态大型语言模型(MLLM)构建高效条件评估器,优化条件排序。DynamicControl联合优化MLLM和扩散模型,利用MLLM的推理能力促进多条件文本到图像任务,最终排序的条件输入到并行多控制适配器,学习动态视觉条件的特征图并整合它们以调节ControlNet,增强对生成图像的控制。
快速的移动端文本到图像生成工具
MobileDiffusion是一个轻量级的潜在扩散模型,专为移动设备设计,可以在0.5秒内根据文本提示生成512x512高质量图像。相较于其他文本到图像模型,它更小巧(仅520M参数),非常适合在手机上部署使用。它的主要功能包括:1)基于文本生成图像;2)快速生成,0.5秒内完成;3)小巧的参数量,仅520M;4)生成高质量图像。主要使用场景包括内容创作、艺术创作、游戏和App开发等领域。示例使用包括:输入'盛开的玫瑰花'生成玫瑰花图片,输入'金色 retrievier 撒欢跑'生成小狗图片,输入'火星风景,外太空'生成火星图。相较于其他大模型,它更适合在移动设备上部署使用。
一种先进的文本到图像的生成模型。
FLUX.1-dev-Controlnet-Union-alpha是一个文本到图像的生成模型,属于Diffusers系列,使用ControlNet技术进行控制。目前发布的是alpha版本,尚未完全训练完成,但已经展示了其代码的有效性。该模型旨在通过开源社区的快速成长,推动Flux生态系统的发展。尽管完全训练的Union模型可能在特定领域如姿势控制上不如专业模型,但随着训练的进展,其性能将不断提升。
AI模型测试与文本到图像提示集合平台
Prompt Llama是一个专注于文本到图像生成的AI模型测试平台,它允许用户收集高质量的文本提示,并测试不同模型在同一提示下的表现。该平台支持多种AI模型,包括但不限于midjourney、DALL·E 3、Firefly等,是AI图像生成领域研究者和爱好者的宝贵资源。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
快速个性化文本到图像模型
HyperDreamBooth是由Google Research开发的一种超网络,用于快速个性化文本到图像模型。它通过从单张人脸图像生成一组小型的个性化权重,结合快速微调,能够在多种上下文和风格中生成具有高主题细节的人脸图像,同时保持模型对多样化风格和语义修改的关键知识。
基于LLM的文本到图像生成系统
DiffusionGPT是一种基于大型语言模型(LLM)的文本到图像生成系统。它利用扩散模型构建了针对各种生成模型的领域特定树,从而能够无缝地适应各种类型的提示并集成领域专家模型。此外,DiffusionGPT引入了优势数据库,其中的思维树得到了人类反馈的丰富,使模型选择过程与人类偏好保持一致。通过广泛的实验和比较,我们展示了DiffusionGPT的有效性,展示了它在不同领域推动图像合成边界的潜力。
开源的基于流的文本到图像生成模型
AuraFlow v0.1是一个完全开源的、基于流的文本到图像生成模型,它在GenEval上达到了最先进的结果。目前模型处于beta阶段,正在不断改进中,社区反馈至关重要。感谢两位工程师@cloneofsimo和@isidentical将此项目变为现实,以及为该项目奠定基础的研究人员。
OFT可有效稳定微调文本到图像扩散模型
Controlling Text-to-Image Diffusion研究了如何有效引导或控制强大的文本到图像生成模型进行各种下游任务。提出了正交微调(OFT)方法,可以保持模型的生成能力。OFT可以保持神经元之间的超球面能量不变,防止模型坍塌。作者考虑了两种重要的微调任务:主体驱动生成和可控生成。结果表明,OFT方法在生成质量和收敛速度上优于现有方法。
文本到图像生成/编辑框架
RPG-DiffusionMaster是一个全新的无需训练的文本到图像生成/编辑框架,利用多模态LLM的链式推理能力增强文本到图像扩散模型的组合性。该框架采用MLLM作为全局规划器,将复杂图像生成过程分解为多个子区域内的简单生成任务。同时提出了互补的区域扩散以实现区域化的组合生成。此外,在提出的RPG框架中闭环地集成了文本引导的图像生成和编辑,从而增强了泛化能力。大量实验证明,RPG-DiffusionMaster在多类别对象组合和文本-图像语义对齐方面优于DALL-E 3和SDXL等最先进的文本到图像扩散模型。特别地,RPG框架与各种MLLM架构(例如MiniGPT-4)和扩散骨干(例如ControlNet)兼容性广泛。
© 2025 AIbase 备案号:闽ICP备08105208号-14