需求人群:
"目标受众主要是艺术家、设计师和创意工作者,他们可以利用half_illustration模型快速生成具有独特风格的图像,提升创作效率和作品的艺术表现力。"
使用场景示例:
在东京日落时分,以TOK风格创造一位穿着70年代圆形古怪太阳镜的女性的前卫戏剧性动作姿势。
在西雅图日落时分,以TOK风格创造一位戴着90年代圆形古怪太阳镜的人的前卫戏剧性动作姿势。
在东京的篮球场上,以TOK风格创造一位有着锐利眼神和面部纹身的人的戏剧性动作姿势。
在东京的篮球场上,以TOK风格创造一位戴着创意水桶帽的人的戏剧性动作姿势。
产品特色:
结合摄影和插图元素生成图像
使用特定触发词以保持风格一致性
支持在Replicate平台上运行
适用于艺术创作和设计领域
支持下载模型并在本地使用
与diffusers库兼容,方便集成到现有项目中
使用教程:
1. 下载half_illustration模型文件。
2. 使用diffusers库中的AutoPipelineForText2Image来加载模型。
3. 通过pipeline.load_lora_weights方法加载LoRA权重。
4. 使用pipeline方法输入描述性文本,生成图像。
5. 根据需要调整文本描述和生成参数,以获得理想的图像效果。
6. 保存生成的图像,并根据需要进行进一步的编辑或应用。
浏览量:74
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
创造独特的半插图半照片图像。
half_illustration是一个基于Flux Dev 1模型的文本到图像生成模型,能够结合摄影和插图元素,创造出具有艺术感的图像。该模型使用了LoRA技术,可以通过特定的触发词来保持风格一致性,适合用于艺术创作和设计领域。
多视图一致性图像生成的便捷解决方案
MV-Adapter是一种基于适配器的多视图图像生成解决方案,它能够在不改变原有网络结构或特征空间的前提下,增强预训练的文本到图像(T2I)模型及其衍生模型。通过更新更少的参数,MV-Adapter实现了高效的训练并保留了预训练模型中嵌入的先验知识,降低了过拟合风险。该技术通过创新的设计,如复制的自注意力层和并行注意力架构,使得适配器能够继承预训练模型的强大先验,以建模新的3D知识。此外,MV-Adapter还提供了统一的条件编码器,无缝整合相机参数和几何信息,支持基于文本和图像的3D生成以及纹理映射等应用。MV-Adapter在Stable Diffusion XL(SDXL)上实现了768分辨率的多视图生成,并展示了其适应性和多功能性,能够扩展到任意视图生成,开启更广泛的应用可能性。
基于FLUX.1-dev模型的IP-Adapter,实现图像工作如文本般灵活。
FLUX.1-dev-IP-Adapter是一个基于FLUX.1-dev模型的IP-Adapter,由InstantX Team研发。该模型能够将图像工作处理得像文本一样灵活,使得图像生成和编辑更加高效和直观。它支持图像参考,但不适用于细粒度的风格转换或角色一致性。模型在10M开源数据集上训练,使用128的批量大小和80K的训练步骤。该模型在图像生成领域具有创新性,能够提供多样化的图像生成解决方案,但可能存在风格或概念覆盖不足的问题。
先进的文本到图像模型工具套件
FLUX.1 Tools是Black Forest Labs推出的一套模型工具,旨在为基于文本的图像生成模型FLUX.1增加控制和可操作性,使得对真实和生成的图像进行修改和再创造成为可能。该工具套件包含四个不同的特性,以开放访问模型的形式在FLUX.1 [dev]模型系列中提供,并作为BFL API的补充,支持FLUX.1 [pro]。FLUX.1 Tools的主要优点包括先进的图像修复和扩展能力、结构化引导、图像变化和重构等,这些功能对于图像编辑和创作领域具有重要意义。
基于文本提示修订图像的大型扩散模型
SeedEdit是Doubao Team推出的大型扩散模型,用于根据任何文本提示修订图像。它通过逐步将图像生成器与强大的图像编辑器对齐,实现了图像重建和图像再生之间的最佳平衡。SeedEdit能够实现高审美/分辨率图像的零样本稳定编辑,并支持图像的连续修订。该技术的重要性在于其能够解决图像编辑问题中成对图像数据稀缺的核心难题,通过将文本到图像(T2I)生成模型视为弱编辑模型,并通过生成带有新提示的新图像来实现“编辑”,然后将其蒸馏并与之对齐到图像条件编辑模型中。
基于文本生成服装图像的AI模型
FLUX.1-dev LoRA Outfit Generator是一个文本到图像的AI模型,能够根据用户详细描述的颜色、图案、合身度、风格、材质和类型来生成服装。该模型使用了H&M Fashion Captions Dataset数据集进行训练,并基于Ostris的AI Toolkit进行开发。它的重要性在于能够辅助设计师快速实现设计想法,加速服装行业的创新和生产流程。
训练无关的区域提示扩散变换器模型
Regional-Prompting-FLUX是一种训练无关的区域提示扩散变换器模型,它能够在无需训练的情况下,为扩散变换器(如FLUX)提供细粒度的组合文本到图像生成能力。该模型不仅效果显著,而且与LoRA和ControlNet高度兼容,能够在保持高速度的同时减少GPU内存的使用。
基于人工智能的图像生成模型
Stable Diffusion 3.5 Medium 是由 Stability AI 提供的一款基于人工智能的图像生成模型,它能够根据文本描述生成高质量的图像。这项技术的重要性在于它能够极大地推动创意产业的发展,如游戏设计、广告、艺术创作等领域。Stable Diffusion 3.5 Medium 以其高效的图像生成能力、易用性和较低的资源消耗而受到用户的青睐。目前,该模型在 Hugging Face 平台上以免费试用的形式提供给用户。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
基于文本生成高质量图像的AI模型
SD3.5-LoRA-Linear-Red-Light是一个基于文本到图像生成的AI模型,通过使用LoRA(Low-Rank Adaptation)技术,该模型能够根据用户提供的文本提示生成高质量的图像。这种技术的重要性在于它能够以较低的计算成本实现模型的微调,同时保持生成图像的多样性和质量。该模型基于Stable Diffusion 3.5 Large模型,并在此基础上进行了优化和调整,以适应特定的图像生成需求。
基于FLUX.1-dev的文本到图像生成模型
FLUX.1-dev-LoRA-Text-Poster是由Shakker-Labs开发的文本到图像生成模型,专门用于艺术文本海报的生成。该模型利用LoRA技术,通过文本提示来生成图像,为用户提供了一种创新的方式来创作艺术作品。模型的训练由版权用户cooooool完成,并在Hugging Face平台上共享,以促进社区的交流和发展。模型遵循非商业用途的flux-1-dev许可协议。
文本到图像生成的自适应工作流
ComfyGen 是一个专注于文本到图像生成的自适应工作流系统,它通过学习用户提示来自动化并定制有效的工作流。这项技术的出现,标志着从使用单一模型到结合多个专业组件的复杂工作流的转变,旨在提高图像生成的质量。ComfyGen 背后的主要优点是能够根据用户的文本提示自动调整工作流,以生成更高质量的图像,这对于需要生成特定风格或主题图像的用户来说非常重要。
生成融合宫崎骏风格和新海诚氛围的梦幻风景图
Flux Ghibsky Illustration 是一个基于文本生成图像的模型,它结合了宫崎骏动画工作室的奇幻细节和新海诚作品中的宁静天空,创造出迷人的场景。该模型特别适合创造梦幻般的视觉效果,用户可以通过特定的触发词来生成具有独特审美的图像。它是基于Hugging Face平台的开源项目,允许用户下载模型并在Replicate上运行。
基于FLUX.1-dev模型的8步蒸馏Lora,用于文本到图像生成。
FLUX.1-Turbo-Alpha是一个基于FLUX.1-dev模型的8步蒸馏Lora,由AlimamaCreative Team发布。该模型使用多头鉴别器来提高蒸馏质量,可以用于文本到图像(T2I)、修复控制网络等FLUX相关模型。推荐使用指导比例为3.5,Lora比例为1。该模型在1M开源和内部源图像上进行训练,采用对抗性训练提高质量,固定原始FLUX.1-dev变换器作为鉴别器主干,并在每层变换器上添加多头。
一键式创意图像生成模型
FLUX.1-dev-LoRA-One-Click-Creative-Template 是一个基于 LoRA 训练的图像生成模型,由 Shakker-Labs 提供。该模型专注于创意照片生成,能够将用户的文本提示转化为具有创意性的图像。模型使用了先进的文本到图像的生成技术,特别适合需要快速生成高质量图像的用户。它是基于 Hugging Face 平台,可以方便地进行部署和使用。模型的非商业使用是免费的,但商业使用需要遵守相应的许可协议。
逆向绘画技术,重现绘画过程
Inverse Painting 是一种基于扩散模型的方法,能够从一幅目标画作生成绘画过程的时间流逝视频。该技术通过训练学习真实艺术家的绘画过程,能够处理多种艺术风格,并生成类似人类艺术家的绘画过程视频。它结合了文本和区域理解,定义了一组绘画指令,并使用新颖的扩散基础渲染器更新画布。该技术不仅能够处理训练中有限的丙烯画风格,还能为广泛的艺术风格和流派提供合理的结果。
最先进的图像生成模型
FLUX1.1 [pro] 是 Black Forest Labs 发布的最新图像生成模型,它在速度和图像质量上都有显著提升。该模型提供六倍于前代的速度,同时改善了图像质量、提示遵循度和多样性。FLUX1.1 [pro] 还提供了更高级的定制化选项,以及更优的性价比,适合需要高效、高质量图像生成的开发者和企业。
基于级联扩散的文本到图像生成系统
CogView3是一个基于级联扩散的文本到图像生成系统,使用中继扩散框架。该系统通过将高分辨率图像生成过程分解为多个阶段,并通过中继超分辨率过程,在低分辨率生成结果上添加高斯噪声,从而开始从这些带噪声的图像进行扩散过程。CogView3在生成图像方面超越了SDXL,具有更快的生成速度和更高的图像质量。
AI模型测试与文本到图像提示集合平台
Prompt Llama是一个专注于文本到图像生成的AI模型测试平台,它允许用户收集高质量的文本提示,并测试不同模型在同一提示下的表现。该平台支持多种AI模型,包括但不限于midjourney、DALL·E 3、Firefly等,是AI图像生成领域研究者和爱好者的宝贵资源。
在线生成精美图片,释放创意潜力。
Flux Lora Online 是一个在线平台,提供多种 Flux Lora 模型,用于生成各种风格的图像。这些模型包括但不限于写实风格、动漫风格、迪士尼风格等,能够满足不同用户对图像生成的多样化需求。平台采用先进的图像生成技术,提供高分辨率和细节丰富的图像,同时拥有用户友好的界面,简化工作流程,提高生产力。
用于精确控制扩散模型中概念的低秩适配器
Concept Sliders 是一种用于精确控制扩散模型中概念的技术,它通过低秩适配器(LoRA)在预训练模型之上进行应用,允许艺术家和用户通过简单的文本描述或图像对来训练控制特定属性的方向。这种技术的主要优点是能够在不改变图像整体结构的情况下,对生成的图像进行细微调整,如眼睛大小、光线等,从而实现更精细的控制。它为艺术家提供了一种新的创作表达方式,同时解决了生成模糊或扭曲图像的问题。
多功能文本到图像扩散模型,生成高质量非真实感图像。
Pony Diffusion V6 XL是一个文本到图像的扩散模型,专门设计用于生成以小马为主题的高质量艺术作品。它在大约80,000张小马图像的数据集上进行了微调,确保生成的图像既相关又美观。该模型采用用户友好的界面,易于使用,并通过CLIP进行美学排名,以提升图像质量。Pony Diffusion在CreativeML OpenRAIL许可证下提供,允许用户自由使用、再分发和修改模型。
一种用于文本到图像扩散模型的概念擦除技术
RECE是一种文本到图像扩散模型的概念擦除技术,它通过在模型训练过程中引入正则化项来实现对特定概念的可靠和高效擦除。这项技术对于提高图像生成模型的安全性和控制性具有重要意义,特别是在需要避免生成不适当内容的场景中。RECE技术的主要优点包括高效率、高可靠性和易于集成到现有模型中。
内容风格合成在文本到图像生成中的应用
CSGO是一个基于内容风格合成的文本到图像生成模型,它通过一个数据构建管道生成并自动清洗风格化数据三元组,构建了首个大规模的风格迁移数据集IMAGStyle,包含210k图像三元组。CSGO模型采用端到端训练,明确解耦内容和风格特征,通过独立特征注入实现。它实现了图像驱动的风格迁移、文本驱动的风格合成以及文本编辑驱动的风格合成,具有无需微调即可推理、保持原始文本到图像模型的生成能力、统一风格迁移和风格合成等优点。
© 2024 AIbase 备案号:闽ICP备08105208号-14