需求人群:
"Dolphin 2.9.1 Mixtral 1x22b适合需要高级自然语言处理能力的用户,如软件开发者、数据科学家和AI研究者。它能够处理复杂的指令、对话和编程任务,是进行AI驱动的软件开发和研究的理想选择。"
使用场景示例:
用于开发智能聊天机器人,提供流畅的对话体验
辅助编程,自动生成代码片段,提高开发效率
在教育领域,作为教学辅助工具,帮助学生理解复杂概念
产品特色:
支持文本生成,包括指令、对话和编码技能
具备初步的代理能力和函数调用支持
全权重微调,目标所有层
使用SLERP和自定义脚本提取单一专家
数据集过滤去除对齐和偏见,提高合规性
模型通过Apache-2.0许可,支持商业用途
使用教程:
步骤一:访问Hugging Face平台并搜索Dolphin 2.9.1 Mixtral 1x22b模型
步骤二:阅读模型描述和使用指南,了解模型的功能和限制
步骤三:根据需求选择合适的使用场景,如对话系统开发或编程辅助
步骤四:使用Hugging Face提供的API或工具,集成模型到项目中
步骤五:根据项目需求,对模型进行必要的配置和调整
步骤六:测试模型性能,确保其满足预期的功能和效果
步骤七:在模型的帮助下完成特定的任务,如自动生成代码或对话回复
浏览量:47
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
基于Dolphin-2.9-Mixtral-8x22b的先进AI模型
Dolphin 2.9.1 Mixtral 1x22b是由Cognitive Computations团队精心训练和策划的AI模型,基于Dolphin-2.9-Mixtral-8x22b版本,拥有Apache-2.0许可。该模型具备64k上下文容量,通过16k序列长度的全权重微调,经过27小时在8个H100 GPU上的训练完成。Dolphin 2.9.1具有多样的指令、对话和编码技能,还具备初步的代理能力和支持函数调用。该模型未进行审查,数据集已过滤去除对齐和偏见,使其更加合规。建议在作为服务公开之前,实施自己的对齐层。
基于Llama-3-8B的多模态大型语言模型,专注于UI任务。
Ferret-UI是首个以用户界面为中心的多模态大型语言模型(MLLM),专为指代表达、定位和推理任务设计。它基于Gemma-2B和Llama-3-8B构建,能够执行复杂的用户界面任务。这个版本遵循了Apple的研究论文,是一个强大的工具,可以用于图像文本到文本的任务,并且在对话和文本生成方面具有优势。
一个用于自然语言处理的先进模型
Meta-spirit-lm是由Meta公司开发的一款先进的自然语言处理模型,它在Hugging Face平台上发布。这款模型在处理语言相关的任务时表现出色,如文本生成、翻译、问答等。它的重要性在于能够理解和生成自然语言,极大地推动了人工智能在语言理解领域的进步。该模型在开源社区中受到广泛关注,可以用于研究和商业用途,但需遵守FAIR Noncommercial Research License。
多语言大型语言模型
Llama-3.2-1B是由Meta公司发布的多语言大型语言模型,专注于文本生成任务。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。该模型支持8种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语,并在多种对话使用案例中表现优异。
高效能的第三代MiniCPM系列模型
MiniCPM3-4B是MiniCPM系列的第三代产品,整体性能超越了Phi-3.5-mini-Instruct和GPT-3.5-Turbo-0125,与许多近期的7B至9B模型相当。与前两代相比,MiniCPM3-4B具有更强大的多功能性,支持函数调用和代码解释器,使其能够更广泛地应用于各种场景。此外,MiniCPM3-4B拥有32k的上下文窗口,配合LLMxMapReduce技术,理论上可以处理无限上下文,而无需大量内存。
NVIDIA的高级语言模型,优化于英文对话场景。
Nemotron-4-340B-Instruct是由NVIDIA开发的大型语言模型(LLM),专为英文单轮和多轮对话场景优化。该模型支持4096个token的上下文长度,经过监督式微调(SFT)、直接偏好优化(DPO)和奖励感知偏好优化(RPO)等额外的对齐步骤。模型在约20K人工标注数据的基础上,通过合成数据生成管道合成了超过98%的用于监督微调和偏好微调的数据。这使得模型在人类对话偏好、数学推理、编码和指令遵循方面表现良好,并且能够为多种用例生成高质量的合成数据。
Aloe是一款专为医疗领域设计的高性能语言模型,提供先进的文本生成和对话能力。
Aloe是由HPAI开发的一款医疗领域的语言模型,基于Meta Llama 3 8B模型进行优化。它通过模型融合和先进的提示策略,达到了与其规模相匹配的最先进水平。Aloe在伦理和事实性指标上得分较高,这得益于红队和对齐工作的结合。该模型提供了医疗特定的风险评估,以促进这些系统的安全使用和部署。
一款高效经济的语言模型,具有强大的专家混合特性。
DeepSeek-V2是一个由236B参数构成的混合专家(MoE)语言模型,它在保持经济训练和高效推理的同时,激活每个token的21B参数。与前代DeepSeek 67B相比,DeepSeek-V2在性能上更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,并提升了最大生成吞吐量至5.76倍。该模型在8.1万亿token的高质量语料库上进行了预训练,并通过监督式微调(SFT)和强化学习(RL)进一步优化,使其在标准基准测试和开放式生成评估中表现出色。
一款基于NVIDIA的高性能对话式问答和检索增强型生成模型。
Llama3-ChatQA-1.5-70B 是由 NVIDIA 开发的一款先进的对话式问答和检索增强型生成(RAG)模型。该模型基于 Llama-3 基础模型,并使用改进的训练方法,特别增强了表格和算术计算能力。它有两个变体:Llama3-ChatQA-1.5-8B 和 Llama3-ChatQA-1.5-70B。该模型在多个对话式问答基准测试中取得了优异的成绩,显示出其在处理复杂对话和生成相关回答方面的高效能力。
一款基于NVIDIA技术构建的高级对话问答和生成模型
Llama3-ChatQA-1.5-8B是一款由NVIDIA开发的高级对话问答和检索增强生成(RAG)模型。该模型在ChatQA (1.0)的基础上进行了改进,通过增加对话问答数据来增强其表格和算术计算能力。它有两个变体:Llama3-ChatQA-1.5-8B和Llama3-ChatQA-1.5-70B,都是使用Megatron-LM进行训练,然后转换为Hugging Face格式。该模型在ChatRAG Bench的基准测试中表现出色,适用于需要复杂对话理解和生成的场景。
提高生产力的AI助手,简单易用
whatwide.ai是一个提高生产力的AI助手,使用人工智能技术来节省时间并提高工作效率。它提供了50多种AI模型,包括文本生成、网站帮助、社交媒体分析、编程辅助等多种功能。whatwide.ai的优点在于高质量的内容生成、快速且安全的操作,以及多种AI类型供用户选择。
一款由Gradient AI团队开发的高性能文本生成模型。
Llama-3 8B Instruct 262k是一款由Gradient AI团队开发的文本生成模型,它扩展了LLama-3 8B的上下文长度至超过160K,展示了SOTA(State of the Art)大型语言模型在学习长文本操作时的潜力。该模型通过适当的调整RoPE theta参数,并结合NTK-aware插值和数据驱动的优化技术,实现了在长文本上的高效学习。此外,它还基于EasyContext Blockwise RingAttention库构建,以支持在高性能硬件上的可扩展和高效训练。
高效多模态大型语言模型
TinyGPT-V 是一种高效的多模态大型语言模型,通过使用小型骨干网络来实现。它具有强大的语言理解和生成能力,适用于各种自然语言处理任务。TinyGPT-V 采用 Phi-2 作为预训练模型,具备出色的性能和效率。
Mistral 7B是最佳7B模型
Mistral 7B是由Mistral AI免费提供给所有人使用的第一个大型语言模型。它适用于许多用例,具有优秀的自然编码能力和8k序列长度。该模型在所有基准测试中表现优于Llama 2.13B,并且在代码和推理基准测试中远远超过其他模型。Mistral 7B易于在任何云端和游戏GPU上部署。
简化LLM完成和嵌入调用的开源库
LiteLLM是一个开源库,旨在简化LLM完成和嵌入调用。它集成了Azure、Anthropic、OpenAI、Cohere和Replicate等多个平台的API,让你可以使用一个函数轻松调用它们。LiteLLM提供了方便的接口和一致的输出格式,使得使用LLM模型变得更加简单。它可以用于各种场景,如自然语言处理、文本生成、对话系统等。
使用本地AI生成微型故事
TinyStories是一款在设备上运行的AI文本生成应用。用户可以通过点击“触发自动补全”生成微型故事,并可以编辑和输入自己的提示。本应用在设备上使用TinyStories-1M AI模型来完成故事的自动补全。该应用界面友好,并且提供免费下载。
基于Stable Diffusion 3.5 Large模型的IP适配器
SD3.5-Large-IP-Adapter是一个基于Stable Diffusion 3.5 Large模型的IP适配器,由InstantX Team研发。该模型能够将图像处理工作类比于文本处理,具有强大的图像生成能力,并且可以通过适配器技术进一步提升图像生成的质量和效果。该技术的重要性在于其能够推动图像生成技术的发展,特别是在创意工作和艺术创作领域。产品背景信息显示,该模型是由Hugging Face和fal.ai赞助的项目,并且遵循stabilityai-ai-community的许可协议。
Qwen2.5-Coder系列中的1.5B参数量级代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该模型在训练中包含了5.5万亿的源代码、文本代码关联、合成数据等,是目前开源代码语言模型中的佼佼者,其编码能力可与GPT-4相媲美。此外,Qwen2.5-Coder还具备更全面的现实世界应用基础,如代码代理等,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列的1.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、代码推理和代码修复而设计。基于强大的Qwen2.5,通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此模型是1.5B参数的指令调优版本,采用GGUF格式,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
Qwen2.5-Coder系列中的1.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、推理和修复而设计。基于强大的Qwen2.5,该模型在训练时包含了5.5万亿的源代码、文本代码基础、合成数据等,使其在代码能力上达到了开源代码LLM的最新水平。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen Turbo 1M Demo是一个由Qwen提供的Hugging Face空间。
Qwen Turbo 1M Demo是一个基于Hugging Face平台的人工智能模型演示。这个模型代表了自然语言处理技术的最新进展,特别是在中文文本理解和生成方面。它的重要性在于能够提供高效、准确的语言模型,以支持各种语言相关的应用,如机器翻译、文本摘要、问答系统等。Qwen Turbo 1M Demo以其较小的模型尺寸和快速的处理速度而受到青睐,适合需要快速部署和高效运行的场合。目前,该模型是免费试用的,具体价格和定位可能需要进一步的商业洽谈。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
Qwen2.5-Coder系列中的3B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码接地、合成数据等。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。该模型在实际应用中提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
提升AI模型响应质量的开发者控制台
Anthropic Console是一个开发者控制台,它通过引入改进提示和直接管理示例的功能,帮助开发者利用先进的提示工程技术来优化AI模型的响应。该控制台支持链式思考、示例标准化、示例增强、重写和预填充等功能,以提高AI模型的准确性和可靠性。Anthropic Console的背景是随着AI技术的发展,对于更高效、准确的AI应用需求的增加,特别是在多标签分类测试和文本摘要任务中,通过使用Anthropic Console,可以显著提高模型的准确性和输出的字数控制。
开源代码生成语言模型
Qwen2.5-Coder-32B-Instruct-GPTQ-Int8是Qwen系列中针对代码生成优化的大型语言模型,拥有32亿参数,支持长文本处理,是当前开源代码生成领域最先进的模型之一。该模型基于Qwen2.5进行了进一步的训练和优化,不仅在代码生成、推理和修复方面有显著提升,而且在数学和通用能力上也保持了优势。模型采用GPTQ 8-bit量化技术,以减少模型大小并提高运行效率。
Qwen2.5-Coder系列中的指令调优0.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,通过扩展训练令牌到5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码LLM,其编码能力与GPT-4o相匹配。该模型不仅增强了编码能力,还保持了在数学和通用能力方面的优势,为实际应用如代码代理提供了更全面的基础。
Qwen2.5-Coder系列中的1.5B参数代码生成模型
Qwen2.5-Coder-1.5B是Qwen2.5-Coder系列中的一款大型语言模型,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该模型通过扩展训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,成为当前开源代码LLM中的佼佼者,编码能力媲美GPT-4o。此外,Qwen2.5-Coder-1.5B还强化了数学和通用能力,为实际应用如代码代理提供了更全面的基础。
Qwen2.5-Coder系列中的1.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于Qwen2.5的强大能力,该模型在训练时使用了5.5万亿的源代码、文本代码基础、合成数据等,是目前开源代码生成语言模型中的佼佼者,编码能力与GPT-4o相媲美。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势,为实际应用如代码代理提供了更全面的基础。
Qwen2.5-Coder系列的3B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该系列模型通过增加训练令牌至5.5万亿,包括源代码、文本代码接地、合成数据等,显著提升了代码生成、推理和修复能力。Qwen2.5-Coder-3B是该系列中的一个模型,拥有3.09B参数,36层,16个注意力头(Q)和2个注意力头(KV),全32,768令牌上下文长度。该模型是目前开源代码LLM中的佼佼者,编码能力与GPT-4o相匹配,为开发者提供了一个强大的代码辅助工具。
© 2024 AIbase 备案号:闽ICP备08105208号-14