需求人群:
"目标受众主要是使用ComfyUI进行模型训练和部署的开发者和研究人员。他们需要在资源受限的环境中优化模型性能,ComfyUI-GGUF通过量化技术帮助他们实现这一目标。"
使用场景示例:
开发者使用ComfyUI-GGUF在低端GPU上部署flux模型,实现资源优化。
研究人员利用GGUF量化技术,提升了模型在边缘设备上的性能。
教育机构在教授深度学习时,使用ComfyUI-GGUF作为案例,教授模型优化技巧。
产品特色:
支持GGUF格式模型文件的量化
适用于transformer/DiT模型,如flux
允许在低端GPU上运行,优化资源使用
提供了自定义节点以支持模型量化
不包括LoRA / Controlnet等支持,因为权重已被量化
提供了安装和使用指南
使用教程:
1. 确保ComfyUI版本支持自定义操作。
2. 使用git克隆ComfyUI-GGUF仓库。
3. 安装推理所需的依赖项(pip install --upgrade gguf)。
4. 将.gguf模型文件放置在ComfyUI/models/unet文件夹中。
5. 使用GGUF Unet加载器,该加载器位于bootleg类别下。
6. 根据需要调整模型参数和设置,进行模型训练或推理。
浏览量:218
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
GGUF量化支持,优化ComfyUI原生模型性能
ComfyUI-GGUF是一个为ComfyUI原生模型提供GGUF量化支持的项目。它允许模型文件以GGUF格式存储,这种格式由llama.cpp推广。尽管常规的UNET模型(conv2d)不适用于量化,但像flux这样的transformer/DiT模型似乎受量化影响较小。这使得它们可以在低端GPU上以更低的每权重变量比特率进行运行。
1.58-bit量化的先进文本到图像生成模型
1.58-bit FLUX是一种先进的文本到图像生成模型,通过使用1.58位权重(即{-1, 0, +1}中的值)来量化FLUX.1-dev模型,同时保持生成1024x1024图像的可比性能。该方法无需访问图像数据,完全依赖于FLUX.1-dev模型的自监督。此外,开发了一种定制的内核,优化了1.58位操作,实现了模型存储减少7.7倍,推理内存减少5.1倍,并改善了推理延迟。在GenEval和T2I Compbench基准测试中的广泛评估表明,1.58-bit FLUX在保持生成质量的同时显著提高了计算效率。
一个基于Llama模型的量化版本,用于对话和幻觉检测。
PatronusAI/Llama-3-Patronus-Lynx-8B-v1.1-Instruct-Q8-GGUF是一个基于Llama模型的量化版本,专为对话和幻觉检测设计。该模型使用了GGUF格式,拥有8.03亿参数,属于大型语言模型。它的重要性在于能够提供高质量的对话生成和幻觉检测能力,同时保持模型的高效运行。该模型是基于Transformers库和GGUF技术构建的,适用于需要高性能对话系统和内容生成的应用场景。
PyTorch原生量化和稀疏性训练与推理库
torchao是PyTorch的一个库,专注于自定义数据类型和优化,支持量化和稀疏化权重、梯度、优化器和激活函数,用于推理和训练。它与torch.compile()和FSDP2兼容,能够为大多数PyTorch模型提供加速。torchao旨在通过量化感知训练(QAT)和后训练量化(PTQ)等技术,提高模型的推理速度和内存效率,同时尽量减小精度损失。
Pruna 是一个模型优化框架,帮助开发者快速高效交付模型。
Pruna 是一个为开发者设计的模型优化框架,通过一系列压缩算法,如量化、修剪和编译等技术,使得机器学习模型在推理时更快、体积更小且计算成本更低。产品适用于多种模型类型,包括 LLMs、视觉转换器等,且支持 Linux、MacOS 和 Windows 等多个平台。Pruna 还提供了企业版 Pruna Pro,解锁更多高级优化功能和优先支持,助力用户在实际应用中提高效率。
通过一行代码部署AI模型,提供快速、稳定且成本效益高的AI服务。
Synexa AI 是一个专注于简化AI模型部署的平台,通过一行代码即可实现模型的快速上线。其主要优点包括极简的部署流程、强大的自动扩展能力、高性价比的GPU资源以及优化的推理引擎,能够显著提升开发效率并降低运行成本。该平台适用于需要快速部署和高效运行AI模型的企业和开发者,提供了一个稳定、高效且经济的解决方案,帮助用户在AI领域快速实现价值。
Moonlight是一个16B参数的混合专家模型,使用Muon优化器训练,性能优异。
Moonlight是基于Muon优化器训练的16B参数混合专家模型(MoE),在大规模训练中表现出色。它通过添加权重衰减和调整参数更新比例,显著提高了训练效率和稳定性。该模型在多项基准测试中超越了现有模型,同时大幅减少了训练所需的计算量。Moonlight的开源实现和预训练模型为研究人员和开发者提供了强大的工具,支持多种自然语言处理任务,如文本生成、代码生成等。
这是一个基于Qwen2.5-32B模型的4位量化版本,专为高效推理和低资源部署设计。
该产品是一个基于Qwen2.5-32B的4位量化语言模型,通过GPTQ技术实现高效推理和低资源消耗。它在保持较高性能的同时,显著降低了模型的存储和计算需求,适合在资源受限的环境中使用。该模型主要面向需要高性能语言生成的应用场景,如智能客服、编程辅助、内容创作等。其开源许可和灵活的部署方式使其在商业和研究领域具有广泛的应用前景。
InternLM3 是一个专注于文本生成的模型集合,提供多种优化版本以满足不同需求。
InternLM3 是由 InternLM 团队开发的一系列高性能语言模型,专注于文本生成任务。该模型通过多种量化技术优化,能够在不同硬件环境下高效运行,同时保持出色的生成质量。其主要优点包括高效的推理性能、多样化的应用场景以及对多种文本生成任务的优化支持。InternLM3 适用于需要高质量文本生成的开发者和研究人员,能够帮助他们在自然语言处理领域快速实现应用。
最新推出的多语言通用嵌入模型,在多个领域表现卓越。
Voyage-3-large 是 Voyage AI 推出的最新多语言通用嵌入模型。该模型在法律、金融、代码等八个领域的100个数据集中排名第一,超越了 OpenAI-v3-large 和 Cohere-v3-English。它通过 Matryoshka 学习和量化感知训练,支持更小维度和 int8 及二进制量化,大幅降低向量数据库成本,同时对检索质量影响极小。该模型还支持 32K 令牌上下文长度,远超 OpenAI(8K)和 Cohere(512)。
高性能的量化语言模型
PatronusAI/glider-gguf是一个基于Hugging Face平台的高性能量化语言模型,采用GGUF格式,支持多种量化版本,如BF16、Q8_0、Q5_K_M、Q4_K_M等。该模型基于phi3架构,拥有3.82B参数,主要优点包括高效的计算性能和较小的模型体积,适用于需要快速推理和低资源消耗的场景。产品背景信息显示,该模型由PatronusAI提供,适合需要进行自然语言处理和文本生成的开发者和企业使用。
EXAONE 3.5系列的7.8B参数双语生成模型
EXAONE 3.5是LG AI Research开发的一系列双语(英语和韩语)指令调优的生成模型,参数从2.4B到32B不等。这些模型支持长达32K令牌的长上下文处理,在真实世界用例和长上下文理解方面展现出了最先进的性能,同时在与近期发布的类似大小模型相比,在通用领域保持竞争力。EXAONE 3.5模型包括:1) 2.4B模型,优化用于部署在小型或资源受限的设备上;2) 7.8B模型,与前代模型大小匹配但提供改进的性能;3) 32B模型,提供强大的性能。
AI模型部署和推理优化的专家
Neural Magic是一家专注于AI模型优化和部署的公司,提供领先的企业级推理解决方案,以最大化性能和提高硬件效率。公司的产品支持在GPU和CPU基础设施上运行领先的开源大型语言模型(LLMs),帮助企业在云、私有数据中心或边缘环境中安全、高效地部署AI模型。Neural Magic的产品背景信息强调了其在机器学习模型优化方面的专业知识,以及与科研机构合作开发的创新LLM压缩技术,如GPTQ和SparseGPT。产品价格和定位方面,Neural Magic提供了免费试用和付费服务,旨在帮助企业降低成本、提高效率,并保持数据隐私和安全。
Go语言库,用于嵌入式向量搜索和语义嵌入
kelindar/search 是一个Go语言库,它提供了嵌入式向量搜索和语义嵌入的功能,基于llama.cpp构建。这个库特别适合于小到中型项目,需要强大的语义搜索能力,同时保持简单高效的实现。它支持GGUF BERT模型,允许用户利用复杂的嵌入技术,而不需要深陷传统搜索系统的复杂性。该库还提供了GPU加速功能,能够在支持的硬件上快速进行计算。如果你的数据集少于100,000条目,这个库可以轻松集成到你的Go应用中,实现语义搜索功能。
高效、轻量级的量化Llama模型,提升移动设备上的运行速度并减少内存占用。
Llama模型是Meta公司推出的大型语言模型,通过量化技术,使得模型体积更小、运行速度更快,同时保持了模型的质量和安全性。这些模型特别适用于移动设备和边缘部署,能够在资源受限的设备上提供快速的设备内推理,同时减少内存占用。量化Llama模型的开发,标志着在移动AI领域的一个重要进步,使得更多的开发者能够在不需要大量计算资源的情况下,构建和部署高质量的AI应用。
FLUX模型的Cog推理引擎
Cog inference for flux models 是一个用于FLUX.1 [schnell] 和 FLUX.1 [dev] 模型的推理引擎,由Black Forest Labs开发。它支持编译与量化,敏感内容检查,以及img2img支持,旨在提高图像生成模型的性能和安全性。
革命性AI数据管理,提升99%准确率
Future AGI是一个自动化AI模型评估平台,通过自动评分AI模型输出,消除了手动QA评估的需求,使QA团队能够专注于更战略性的任务,提高效率和带宽高达10倍。该平台使用自然语言定义对业务最重要的指标,提供增强的灵活性和控制力,以评估模型性能,确保与业务目标的一致性。它还通过整合性能数据和用户反馈到开发过程中,创建了一个持续改进的循环,使AI在每次互动中变得更智能。
用于角色扮演、检索增强生成和功能调用的小型语言模型
Nemotron-Mini-4B-Instruct 是 NVIDIA 开发的一款小型语言模型,通过蒸馏、剪枝和量化优化,以提高速度和便于在设备上部署。它是从 Nemotron-4 15B 通过 NVIDIA 的大型语言模型压缩技术剪枝和蒸馏得到的 nvidia/Minitron-4B-Base 的微调版本。此指令模型针对角色扮演、检索增强问答(RAG QA)和功能调用进行了优化,支持 4096 个令牌的上下文长度,已准备好用于商业用途。
最先进的12B模型,支持多语言应用
Mistral NeMo 是由 Mistral AI 与 NVIDIA 合作构建的 12B 模型,具有 128k 个令牌的大型上下文窗口。它在推理、世界知识和编码准确性方面处于领先地位。该模型专为全球多语言应用程序设计,支持英语、法语、德语、西班牙语、意大利语、葡萄牙语、中文、日语、韩语、阿拉伯语和印地语等多种语言。Mistral NeMo 还使用了新的分词器 Tekken,提高了文本和源代码的压缩效率。此外,该模型经过指令微调,提升了遵循精确指令、推理、处理多轮对话和生成代码的能力。
快速易用的LLM推理和服务平台
vLLM是一个为大型语言模型(LLM)推理和提供服务的快速、易用且高效的库。它通过使用最新的服务吞吐量技术、高效的内存管理、连续批处理请求、CUDA/HIP图快速模型执行、量化技术、优化的CUDA内核等,提供了高性能的推理服务。vLLM支持与流行的HuggingFace模型无缝集成,支持多种解码算法,包括并行采样、束搜索等,支持张量并行性,适用于分布式推理,支持流式输出,并兼容OpenAI API服务器。此外,vLLM还支持NVIDIA和AMD GPU,以及实验性的前缀缓存和多lora支持。
轻量级代码库,用于高效微调Mistral模型。
mistral-finetune是一个轻量级的代码库,它基于LoRA训练范式,允许在冻结大部分权重的情况下,只训练1-2%的额外权重,以低秩矩阵微扰的形式进行微调。它被优化用于多GPU单节点训练设置,对于较小模型,例如7B模型,单个GPU就足够了。该代码库旨在提供简单、有指导意义的微调入口,特别是在数据格式化方面,并不旨在涵盖多种模型架构或硬件类型。
强大的图可视化工具,帮助理解、调试和优化机器学习模型。
Model Explorer 是 Google 开发的一个用于机器学习模型的图可视化工具,它专注于以直观的层次格式可视化大型图,同时也适用于小型模型。该工具特别有助于简化大型模型在设备端平台的部署过程,通过可视化转换、量化和优化数据。Model Explorer 结合了3D游戏和动画制作中使用的图形技术,如实例化渲染和多通道有符号距离场(MSDF),并将其适应于机器学习图渲染。它支持多种图格式,包括 JAX、PyTorch、TensorFlow 和 TensorFlow Lite 使用的格式。Model Explorer 通过层次化视图和导航复杂结构的能力,使得大型模型更易于理解。
谷歌下一代Gemma模型,提供突破性的性能和效率。
Gemma 2是下一代谷歌Gemma模型,拥有27亿参数,提供与Llama 3 70B相当的性能,但模型大小仅为其一半。它在NVIDIA的GPU上运行优化,或在Vertex AI上的单个TPU主机上高效运行,降低了部署成本,使更广泛的用户能够访问和使用。Gemma 2还提供了强大的调优工具链,支持云解决方案和社区工具,如Google Cloud和Axolotl,以及与Hugging Face和NVIDIA TensorRT-LLM的无缝合作伙伴集成。
量化ADHD症状和干预措施的最佳方式
MoodMap是一个用于测量ADHD症状和干预措施的在线工具。它帮助用户跟踪和评估自己的注意力缺陷多动障碍症状,并记录他们使用的干预措施的效果。MoodMap的主要优点包括方便易用的界面,精确的测量结果,以及个性化的建议和反馈。它的背景信息包括ADHD的普遍存在和对个人日常生活和学习能力的影响。MoodMap定位于帮助那些希望更好管理他们ADHD症状的人。
释放大规模未标记数据的力量
Depth Anything是一个高度实用的解决方案,用于稳健的单目深度估计。我们旨在构建一个简单而强大的基础模型,处理任何情况下的任何图像,而不追求新颖的技术模块。为此,我们通过设计数据引擎来扩大数据集,收集并自动注释大规模未标记数据(约62M),从而显着扩大数据覆盖范围,从而能够减少泛化误差。我们研究了两种简单而有效的策略,使数据扩展变得有前途。首先,通过利用数据增强工具创建更具挑战性的优化目标。它迫使模型积极寻求额外的视觉知识并获得强大的表示。其次,开发了辅助监督,以强制模型从预训练编码器中继承丰富的语义先验。我们对其零-shot能力进行了广泛评估,包括六个公共数据集和随机拍摄的照片。它展现出令人印象深刻的泛化能力。此外,通过使用来自NYUv2和KITTI的度量深度信息对其进行微调,我们建立了新的SOTAs。我们更好的深度模型也导致更好的深度条件ControlNet。我们的模型发布在https://github.com/LiheYoung/Depth-Anything。
提供干净的视觉特征
去噪视觉变换器(Denoising Vision Transformers,DVT)是一种针对视觉变换器(ViTs)的新型噪声模型。通过解剖ViT输出并引入可学习的去噪器,DVT能够提取无噪声的特征,从而在离线应用和在线功能中显著改善基于Transformer的模型的性能。DVT不需要重新训练现有的预训练ViTs,可立即应用于任何基于Transformer的架构。通过在多个数据集上进行广泛评估,我们发现DVT在语义和几何任务中持续显著改善现有的最先进通用模型(例如,+3.84 mIoU)。我们希望我们的研究能够鼓励重新评估ViT设计,特别是关于位置嵌入的天真使用。
强悍的实时图像生成
StreamDiffusion 是一种用于实时交互式生成的创新扩散管道。它为当前基于扩散的图像生成技术引入了显著的性能增强。StreamDiffusion 通过高效的批处理操作简化数据处理流程。它提供了改进的引导机制,最小化计算冗余。通过先进的过滤技术提高 GPU 利用率。它还有效地管理输入和输出操作,以实现更顺畅的执行。StreamDiffusion 优化了缓存策略,提供了多种模型优化和性能增强工具。
© 2025 AIbase 备案号:闽ICP备08105208号-14