需求人群:
"该产品适用于音乐研究人员、音乐推荐系统开发者、音乐教育工作者以及对跨模态音乐检索感兴趣的用户。它能够帮助用户快速找到与文本描述或图像场景相匹配的音乐,提升音乐检索的效率和准确性。"
使用场景示例:
通过文本描述检索音乐:输入如 'big band, major key, swing' 等关键词,检索到匹配的音乐。
通过图像检索音乐:输入一幅婚礼场景的图片,模型通过生成的描述检索到婚礼进行曲。
零样本音乐分类:输入一首未标记的音乐,模型通过语义相似性将其分类到对应的音乐类别。
产品特色:
支持跨模态音乐检索,如从乐谱到音频的检索
支持多语言文本到音乐的检索,包括未见语言
支持图像到音乐的检索,通过图像描述匹配音乐
支持零样本音乐分类,通过语义相似性计算
支持音乐语义相似性评估,与人类感知高度一致
提供大规模音乐文本对数据集 M4-RAG 和基准数据集 WikiMT-X
通过 t-SNE 可视化音乐模态和语义分布
使用教程:
1. 访问 CLaMP 3 的在线演示页面或下载模型权重。
2. 输入文本描述、图像或其他模态的查询。
3. 模型通过对比学习对齐查询与音乐模态的特征。
4. 检索与查询最匹配的音乐。
5. 可通过可视化工具查看音乐模态和语义分布。
浏览量:75
最新流量情况
月访问量
601
平均访问时长
00:00:00
每次访问页数
1.02
跳出率
36.03%
流量来源
直接访问
0
自然搜索
50.81%
邮件
0
外链引荐
49.19%
社交媒体
0
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
韩国
100.00%
多语言多模态嵌入模型,用于文本和图像检索。
jina-clip-v2是由Jina AI开发的多语言多模态嵌入模型,支持89种语言的图像检索,能够处理512x512分辨率的图像,提供从64到1024不同维度的输出,以适应不同的存储和处理需求。该模型结合了强大的文本编码器Jina-XLM-RoBERTa和视觉编码器EVA02-L14,通过联合训练创建了对齐的图像和文本表示。jina-clip-v2在多模态搜索和检索方面提供了更准确、更易用的能力,特别是在打破语言障碍、提供跨模态理解和检索方面表现出色。
CLaMP 3 是一个用于跨模态和跨语言音乐信息检索的统一框架。
CLaMP 3 是一种先进的音乐信息检索模型,通过对比学习对齐乐谱、演奏信号、音频录音与多语言文本的特征,支持跨模态和跨语言的音乐检索。它能够处理未对齐的模态和未见的语言,展现出强大的泛化能力。该模型基于大规模数据集 M4-RAG 训练,涵盖全球多种音乐传统,支持多种音乐检索任务,如文本到音乐、图像到音乐等。
开源多语言多模态对话模型
GLM-4系列是智谱AI推出的新一代预训练模型,包括GLM-4-9B、GLM-4-9B-Chat、GLM-4-9B-Chat-1M和GLM-4V-9B。这些模型在语义理解、数学推理、代码执行等方面表现出色,支持多达26种语言,并具备网页浏览、代码执行等高级功能。GLM-4V-9B模型还具备高分辨率的视觉理解能力,适合多模态应用场景。
多语言嵌入模型,用于视觉文档检索。
vdr-2b-multi-v1 是一款由 Hugging Face 推出的多语言嵌入模型,专为视觉文档检索设计。该模型能够将文档页面截图编码为密集的单向量表示,无需 OCR 或数据提取流程即可搜索和查询多语言视觉丰富的文档。基于 MrLight/dse-qwen2-2b-mrl-v1 开发,使用自建的多语言查询 - 图像对数据集进行训练,是 mcdse-2b-v1 的升级版,性能更强大。模型支持意大利语、西班牙语、英语、法语和德语,拥有 50 万高质量样本的开源多语言合成训练数据集,具有低 VRAM 和快速推理的特点,在跨语言检索方面表现出色。
多语言晚交互检索模型,支持嵌入和重排
Jina ColBERT v2是一个先进的晚交互检索模型,基于ColBERT架构构建,支持89种语言,并提供优越的检索性能、用户可控的输出维度和长达8192个token的文本处理能力。它在信息检索领域具有革命性的意义,通过晚交互评分近似于交叉编码器中的联合查询-文档注意力,同时保持了接近传统密集检索模型的推理效率。
最新的视觉语言模型,支持多语言和多模态理解
Qwen2-VL-72B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最新的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,并可以集成到手机、机器人等设备中,进行基于视觉环境和文本指令的自动操作。除了英语和中文,Qwen2-VL现在还支持图像中不同语言文本的理解,包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
Aya Vision 是 Cohere 推出的多语言多模态视觉模型,旨在提升多语言场景下的视觉和文本理解能力。
Aya Vision 是 Cohere For AI 团队开发的先进视觉模型,专注于多语言多模态任务,支持 23 种语言。该模型通过创新的算法突破,如合成标注、多语言数据扩展和多模态模型融合,显著提升了视觉和文本任务的性能。其主要优点包括高效性(在计算资源有限的情况下仍能表现出色)和广泛的多语言支持。Aya Vision 的发布旨在推动多语言多模态研究的前沿发展,并为全球研究社区提供技术支持。
Falcon 2 是一款开源、多语言、多模态的模型,具备图像到文本转换能力。
Falcon 2 是一款具有创新功能的生成式 AI 模型,为我们创造了一种充满可能性的未来路径,只有想象力才是限制。Falcon 2 采用开源许可证,具备多语言和多模态的能力,其中独特的图像到文本转换功能标志着 AI 创新的重大进展。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-4B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上进行了核心模型架构的维护,并在训练和测试策略以及数据质量上进行了显著增强。该模型在处理图像、文本到文本的任务中表现出色,特别是在多模态推理、数学问题解决、OCR、图表和文档理解等方面。作为开源模型,它为研究人员和开发者提供了强大的工具,以探索和构建基于视觉和语言的智能应用。
多语言模型问答助手
Snack AI是一款多语言模型问答助手,可以同时向多个语言模型提问并获取答案。它能够帮助用户快速获取准确的信息,并提供丰富的功能和使用场景。Snack AI的定价灵活多样,适合个人用户和企业用户的不同需求。
轻松实现多语言翻译
Plane是一款基于人工智能技术的多语言翻译工具。它可以快速准确地将文本翻译成多种语言,帮助用户在跨语言交流中解决语言障碍。该助手具有高度的准确性和实时性,同时支持多种语言的互译功能。用户可以通过输入文本或上传文件进行翻译,还可以保存翻译记录和设置常用语言,提高翻译效率。
多模态语言模型
SpeechGPT是一种多模态语言模型,具有内在的跨模态对话能力。它能够感知并生成多模态内容,遵循多模态人类指令。SpeechGPT-Gen是一种扩展了信息链的语音生成模型。SpeechAgents是一种具有多模态多代理系统的人类沟通模拟。SpeechTokenizer是一种统一的语音标记器,适用于语音语言模型。这些模型和数据集的发布日期和相关信息均可在官方网站上找到。
多语言大型语言模型,支持多领域文本生成。
XVERSE-MoE-A36B是由深圳元象科技自主研发的多语言大型语言模型,采用混合专家模型(MoE)架构,具有2554亿的总参数规模和360亿的激活参数量。该模型支持包括中、英、俄、西等40多种语言,特别在中英双语上表现优异。模型使用8K长度的训练样本,并通过精细化的数据采样比例和动态数据切换策略,保证了模型的高质量和多样性。此外,模型还针对MoE架构进行了定制优化,提升了计算效率和整体吞吐量。
多模态大型语言模型,支持图像与文本的交互理解。
InternVL2_5-8B是由OpenGVLab开发的一款多模态大型语言模型(MLLM),它在InternVL 2.0的基础上进行了显著的训练和测试策略增强,以及数据质量提升。该模型采用'ViT-MLP-LLM'架构,集成了新增量预训练的InternViT与多种预训练语言模型,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP projector。InternVL 2.5系列模型在多模态任务上展现出卓越的性能,包括图像和视频理解、多语言理解等。
多模态语言模型预测网络
Honeybee是一个适用于多模态语言模型的局部性增强预测器。它能够提高多模态语言模型在不同下游任务上的性能,如自然语言推理、视觉问答等。Honeybee的优势在于引入了局部性感知机制,可以更好地建模输入样本之间的依赖关系,从而增强多模态语言模型的推理和问答能力。
一个用于信息检索和生成的灵活高性能框架
FlexRAG是一个用于检索增强生成(RAG)任务的灵活且高性能的框架。它支持多模态数据、无缝配置管理和开箱即用的性能,适用于研究和原型开发。该框架使用Python编写,具有轻量级和高性能的特点,能够显著提高RAG工作流的速度和减少延迟。其主要优点包括支持多种数据类型、统一的配置管理以及易于集成和扩展。
高性能多模态语言模型,适用于图像和视频理解。
MiniCPM-V 2.6是一个基于8亿参数的多模态大型语言模型,它在单图像理解、多图像理解和视频理解等多个领域展现出领先性能。该模型在OpenCompass等多个流行基准测试中取得了平均65.2分的高分,超越了广泛使用的专有模型。它还具备强大的OCR能力,支持多语言,并在效率上表现出色,能够在iPad等终端设备上实现实时视频理解。
最新推出的多语言通用嵌入模型,在多个领域表现卓越。
Voyage-3-large 是 Voyage AI 推出的最新多语言通用嵌入模型。该模型在法律、金融、代码等八个领域的100个数据集中排名第一,超越了 OpenAI-v3-large 和 Cohere-v3-English。它通过 Matryoshka 学习和量化感知训练,支持更小维度和 int8 及二进制量化,大幅降低向量数据库成本,同时对检索质量影响极小。该模型还支持 32K 令牌上下文长度,远超 OpenAI(8K)和 Cohere(512)。
AI驱动的多语言翻译服务
Spoken AI是一个独立的在线服务,致力于通过先进的机器学习语言模型,提供超越传统逐字翻译的更准确、更流畅的机器翻译服务。作为全球首家大规模方言翻译器,我们的平台能够准确翻译超过300种语言和方言,这使我们与其他翻译服务区别开来。
AI平台,多语言生成商业创意
IdeaSpark是一个AI平台,帮助您在5种以上的语言中生成商业创意。解锁您的创造力,探索各种行业的机遇。该平台提供了生成商业创意、市场研究、商业模式、商业计划等工具,帮助您验证和推进创业项目。
多语言指令微调的大型语言模型
Aya-23-8B是由Cohere For AI开发的指令微调模型,具有23种语言的强大多语言能力,专注于将高性能预训练模型与Aya Collection结合,为研究人员提供高性能的多语言模型。
1T开源多语言大型语言模型
Tele-FLM-1T是一个开源的1T多语言大型语言模型,基于解码器仅Transformer架构,经过约2T tokens的训练。该模型在规模上展现出卓越的性能,有时甚至超越了更大的模型。除了分享模型权重外,还提供了核心设计、工程实践和训练细节,期待对学术和工业社区都有所裨益。
前沿的多模态大型语言模型
NVLM-D-72B是NVIDIA推出的一款多模态大型语言模型,专注于视觉-语言任务,并且通过多模态训练提升了文本性能。该模型在视觉-语言基准测试中取得了与业界领先模型相媲美的成绩。
多语言大型语言模型
Llama-3.2-1B是由Meta公司发布的多语言大型语言模型,专注于文本生成任务。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。该模型支持8种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语,并在多种对话使用案例中表现优异。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
© 2025 AIbase 备案号:闽ICP备08105208号-14