需求人群:
"目标受众包括研究人员、学生、教师和任何需要从文档中快速提取信息的用户。该产品适合需要处理大量文档并从中获取信息的用户,因为它可以自动化信息检索和问答过程,节省时间并提高效率。"
使用场景示例:
研究人员使用Chat With Your Docs从学术论文中提取关键信息。
学生利用该应用从教科书中获取学习资料的摘要。
教师使用该应用快速回答学生关于课程材料的问题。
产品特色:
支持多种文档格式,包括PDF、网页和YouTube视频。
使用自然语言处理技术,允许用户以自然语言提问。
应用语言模型生成文档内容的向量表示,进行语义匹配。
根据用户问题和文档内容生成响应。
支持设置不同的语言模型提供商和模型。
用户可以选择添加文档进行检索任务。
提供撤回和清除对话历史的功能。
使用教程:
下载并安装所需的Ollama库。
拉取将要使用的聊天模型,例如LLAMA2、MISTRAL和GEMMA。
创建并激活新的Python 3.9环境。
克隆仓库到本地机器。
安装所需的依赖项。
安装ffmpeg以处理YouTube视频。
运行main.py文件,启动应用程序。
在默认的网络浏览器中显示用户界面。
在聊天界面中输入问题。
根据所选的链配置,ChatBot检索适当的响应。
浏览量:21
最新流量情况
月访问量
5.04m
平均访问时长
00:06:44
每次访问页数
5.72
跳出率
37.31%
流量来源
直接访问
52.46%
自然搜索
32.55%
邮件
0.05%
外链引荐
12.51%
社交媒体
2.27%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.03%
德国
3.56%
印度
9.44%
俄罗斯
5.59%
美国
18.14%
与文档进行自然语言对话的Python应用
Chat With Your Docs 是一个Python应用程序,允许用户与多种文档格式(如PDF、网页和YouTube视频)进行对话。用户可以使用自然语言提问,应用程序将基于文档内容提供相关回答。该应用利用语言模型生成准确答案。请注意,应用仅回应与加载的文档相关的问题。
通过自博弈相互推理,提升小型语言模型的解决问题能力。
rStar是一个自我博弈相互推理方法,它通过将推理过程分解为解决方案生成和相互验证,显著提升了小型语言模型(SLMs)的推理能力,无需微调或使用更高级的模型。rStar通过蒙特卡洛树搜索(MCTS)和人类推理动作的结合,构建更高质量的推理轨迹,并通过另一个类似能力的SLM作为鉴别器来验证这些轨迹的正确性。这种方法在多个SLMs上进行了广泛的实验,证明了其在解决多样化推理问题方面的有效性。
利用大型语言模型增量构建知识图谱
iText2KG是一个Python包,旨在利用大型语言模型从文本文档中提取实体和关系,增量构建一致的知识图谱。它具备零样本能力,允许在没有特定训练的情况下跨不同领域进行知识提取。该包包括文档蒸馏、实体提取和关系提取模块,确保实体和关系得到解决和唯一性。它通过Neo4j提供知识图谱的可视化表示,支持交互式探索和分析结构化数据。
前沿语言模型,具有先进的推理能力。
Grok-2是xAI的前沿语言模型,具有最先进的推理能力。此次发布包括Grok家族的两个成员:Grok-2和Grok-2 mini。这两个模型现在都在𝕏平台上发布给Grok用户。Grok-2是Grok-1.5的重要进步,具有聊天、编程和推理方面的前沿能力。同时,xAI引入了Grok-2 mini,一个小巧但功能强大的Grok-2的兄弟模型。Grok-2的早期版本已经在LMSYS排行榜上以“sus-column-r”的名字进行了测试。它在整体Elo得分方面超过了Claude 3.5 Sonnet和GPT-4-Turbo。
通过GPT等大型语言模型与你的文档对话
IncarnaMind是一个开源项目,旨在通过大型语言模型(LLMs)如GPT、Claude和本地开源LLMs,实现与个人文档(PDF、TXT)的交互对话。该项目利用滑动窗口分块机制和集成检索器,提高查询效率,增强LLMs的准确性。它支持多文档对话问答,突破了单文档限制,并兼容多种文件格式和LLM模型。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
高性能语言模型基准测试数据集
DCLM-baseline是一个用于语言模型基准测试的预训练数据集,包含4T个token和3B个文档。它通过精心策划的数据清洗、过滤和去重步骤,从Common Crawl数据集中提取,旨在展示数据策划在训练高效语言模型中的重要性。该数据集仅供研究使用,不适用于生产环境或特定领域的模型训练,如代码和数学。
AI驱动的数据分析工具
Datalore是一个集成了Anthropic的Claude API和多种数据分析库的AI驱动的数据分析工具。它提供了一个交互式界面,使用户能够使用自然语言命令执行数据分析任务。
高效紧凑的7B参数语言模型
Arcee Spark是一个7B参数的语言模型,它在紧凑的包体中提供高性能,证明小型模型也能与大型模型相媲美。它是7B-15B范围内得分最高的模型,并且在MT-Bench基准测试中超越了GPT 3.5和Claude 2.1等更大模型。它适用于实时应用、边缘计算场景、成本效益高的AI实施、快速原型设计和增强数据隐私的本地部署。
多令牌预测模型,提升语言模型的效率与性能
multi-token prediction模型是Facebook基于大型语言模型研究开发的技术,旨在通过预测多个未来令牌来提高模型的效率和性能。该技术允许模型在单次前向传播中生成多个令牌,从而加快生成速度并可能提高模型的准确性。该模型在非商业研究用途下免费提供,但使用时需遵守Meta的隐私政策和相关法律法规。
一种高效的遮蔽扩散语言模型。
Masked Diffusion Language Models (MDLM) 是一种新型的语言模型,它通过遮蔽和扩散机制来生成高质量的文本数据。MDLM 通过改进的训练方法和简化的目标函数,提高了遮蔽扩散模型的性能,使其在语言建模基准测试中达到了新的最佳状态,并接近自回归模型的困惑度。MDLM 的主要优点包括高效的采样器、支持生成任意长度的文本,以及在长程依赖和可控生成方面的优势。
高效无限上下文语言模型的官方实现
Samba是一个简单而强大的混合模型,具有无限的上下文长度。它的架构非常简单:Samba = Mamba + MLP + 滑动窗口注意力 + 层级MLP堆叠。Samba-3.8B模型在Phi3数据集上训练了3.2万亿个token,主要基准测试(例如MMLU、GSM8K和HumanEval)上的表现大大超过了Phi3-mini。Samba还可以通过最少的指令调整实现完美的长上下文检索能力,同时保持与序列长度的线性复杂度。这使得Samba-3.8B-instruct在下游任务(如长上下文摘要)上表现出色。
基于人类长期记忆的新型RAG框架
HippoRAG是一个启发自人类长期记忆的新型检索增强生成(RAG)框架,它使得大型语言模型(LLMs)能够持续地整合跨外部文档的知识。该框架通过实验表明,HippoRAG能够以更低的计算成本提供通常需要昂贵且高延迟迭代LLM流水线的RAG系统能力。
Web高亮器,可用于PDF和网站。免费且易于使用。高亮和注释PDF、网站和YouTube视频。
Glasp是一款PDF和Web高亮器,可帮助您从网络上收集和组织您喜欢的引用和想法。您还可以访问其他志同道合的人的学习成果,并从您的高亮和笔记中构建您的AI副本。它支持多种高亮颜色选项,可在网页和PDF上进行高亮和注释,并且具有AI支持的摘要功能。
一个完全开源的大型语言模型,提供先进的自然语言处理能力。
MAP-NEO是一个完全开源的大型语言模型,它包括预训练数据、数据处理管道(Matrix)、预训练脚本和对齐代码。该模型从零开始训练,使用了4.5T的英文和中文token,展现出与LLaMA2 7B相当的性能。MAP-NEO在推理、数学和编码等具有挑战性的任务中表现出色,超越了同等规模的模型。为了研究目的,我们致力于实现LLM训练过程的完全透明度,因此我们全面发布了MAP-NEO,包括最终和中间检查点、自训练的分词器、预训练语料库以及高效稳定的优化预训练代码库。
在浏览器中尝试Cleanlab的可信任语言模型(TLM)
TLM Playground是Cleanlab的一个工具,用于在浏览器中使用可信任语言模型(TLM)。它提供了一个交互式界面,用户可以输入文本并获得模型生成的响应。TLM是一种基于深度学习的语言模型,它可以用于生成自然语言文本,例如回答问题、翻译、文本摘要等。
一个由真实世界用户与ChatGPT交互构成的语料库。
WildChat数据集是一个由100万真实世界用户与ChatGPT交互组成的语料库,特点是语言多样和用户提示的多样性。该数据集用于微调Meta的Llama-2,创建了WildLlama-7b-user-assistant聊天机器人,能够预测用户提示和助手回应。
在线聊天机器人竞技场,比较不同语言模型的表现。
LMSYS Chatbot Arena 是一个在线平台,旨在通过用户与匿名聊天机器人模型的互动,对大型语言模型(Large Language Models, LLMs)进行基准测试。该平台收集了超过70万次人类投票,计算出LLM的Elo排行榜,以确定谁是聊天机器人领域的冠军。平台提供了一个研究预览,具有有限的安全措施,可能生成不当内容,因此需要用户遵守特定的使用条款。
扩展LLaVA模型,集成Phi-3和LLaMA-3,提升视觉与语言模型的交互能力。
LLaVA++是一个开源项目,旨在通过集成Phi-3和LLaMA-3模型来扩展LLaVA模型的视觉能力。该项目由Mohamed bin Zayed University of AI (MBZUAI)的研究人员开发,通过结合最新的大型语言模型,增强了模型在遵循指令和学术任务导向数据集上的表现。
OpenELM是一套高效的语言模型家族,具备开源训练和推理框架。
OpenELM是由苹果公司开发的语言模型家族,旨在为开源研究社区提供先进的语言模型。这些模型基于公开可用的数据集训练,不提供任何安全保证,可能产生不准确、有害、有偏见或令人反感的输出。因此,用户和开发者需要进行彻底的安全测试,并实施适当的过滤机制。
创建一个AI驱动的聊天机器人,用于您的文档网站
ExplainIt是一个使用AI技术驱动的聊天机器人,它能理解文档的上下文,并提供准确的相关答案。它提供双向交流,您可以提问、获取答案,并追问相关问题。ExplainIt的界面直观易用,任何人都可以快速上手。您只需提供一些示例问题来引发对话,并链接您的文档。
一款小型评分器,提升大型多任务语言模型性能
Cappy是一种新型方法,旨在提高大型多任务语言模型的性能和效率。它是一个轻量级的预训练评分器,基于RoBERTa,仅有3.6亿个参数。Cappy可独立解决分类任务,或作为辅助组件提升语言模型性能。在下游任务中微调Cappy,可有效整合监督信息,提高模型表现,且不需要反向传播到语言模型参数,降低了内存需求。Cappy适用于开源和封闭源代码的语言模型,是一种高效的模型微调方法。
深入理解语言模型中的标记化过程
KarpathyLLMChallenge是一个教育性质的网站,专注于解释和展示语言模型(LLMs)中标记化的重要性和复杂性。它通过详细的文章和实例,帮助用户理解标记化如何影响语言模型的性能和能力。
创建和使用自定义聊天机器人,基于HuggingFace的开源模型。
HuggingChat Assistants是HuggingFace发布的聊天机器人定制平台。用户可以选择HuggingFace托管的多个开源模型,创建自定义的聊天机器人,适用于多个领域。
一款基于人工智能的聊天机器人
Faltah 是一款基于自然语言处理技术的聊天机器人产品。它可以进行自然的闲聊,回答各类问题,获取实时信息,提供娱乐服务等。核心优势是可交流的语言数量多,回答质量高,支持多种使用场景,且不断迭代升级。适合个人及企业客户使用。
1.8B语言模型,开源免费
H2O-Danube-1.8B是一个基于1T标记训练的1.8B语言模型,遵循LLama 2和Mistral的核心原则。尽管我们的模型在训练时使用的总标记数量明显少于类似规模的参考模型,但在多个基准测试中表现出极具竞争力的指标。此外,我们还发布了一个经过监督微调和直接偏好优化训练的聊天模型。我们将H2O-Danube-1.8B以Apache 2.0许可证开放源代码,进一步将大型语言模型民主化,让更广泛的受众经济地受益。
深入了解大型语言模型的内部工作
LLMs-from-scratch将带您逐步了解LLMs的工作原理。本书将逐步指导您创建自己的LLM,通过清晰的文本、图表和示例解释每个阶段。所描述的用于教育目的的训练和开发自己的小型但功能齐全模型的方法,与创建ChatGPT等大规模基础模型的方法相似。
© 2024 AIbase 备案号:闽ICP备08105208号-14