浏览量:88
最新流量情况
月访问量
139.73k
平均访问时长
00:05:15
每次访问页数
7.97
跳出率
34.91%
流量来源
直接访问
35.97%
自然搜索
51.50%
邮件
0.11%
外链引荐
9.05%
社交媒体
2.89%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
德国
10.54%
加纳
4.67%
以色列
34.25%
印度
6.40%
瑞典
4.28%
美国
6.07%
通过生成式AI激活人类潜能
Stability AI是一个专注于生成式人工智能技术的公司,提供多种AI模型,包括文本到图像、视频、音频、3D和语言模型。这些模型能够处理复杂提示,生成逼真的图像和视频,以及高质量的音乐和音效。公司提供灵活的许可选项,包括自托管许可和平台API,以满足不同用户的需求。Stability AI致力于通过开放模型,为全球每个人提供高质量的AI服务。
AI图像、视频和广告生成器
Darwin Studio是一款AI图像、视频和广告生成器,通过使用AI技术和算法,帮助用户快速生成高质量的图像、视频和广告。它具有高效、智能、创新的特点,可以大大提升创意工作效率。
智能工具,激发创意无限
DeepAI是一个提供多种人工智能工具的网站,包括AI视频生成器、AI图像生成器、AI图像编辑器和AI角色聊天等。用户可以利用这些工具将静态图片和文本提示转换成简短的视频动画,或者通过输入提示来生成图像。DeepAI的AI图像编辑器允许用户快速编辑图片,而AI角色聊天则可以与各种角色进行互动。此外,还有去除背景和给黑白照片上色的功能。DeepAI提供PRO会员服务,享受无广告体验、私有图片存储和API访问等特权。
智能AI图像生成
Astria是一款智能AI图像生成工具,通过高质量的Fine-tuning技术,用户可以轻松创建定制化的图像。无需管理GPU、Python脚本和调整超参数,Astria提供稳定高效的生成结果。Astria还提供视频生成功能,可以根据用户的概念创造出具有动态效果的图像。使用Astria API,开发者可以快速接入并轻松使用Astria的功能。无论是个人创作还是商业应用,Astria都能帮助用户快速生成优质图像。
利用AI生成印度风格的图像
BharatDiffusion是一个基于AI的图像生成模型,专门针对印度的多样化景观、文化和遗产进行微调,能够生成反映印度丰富文化和特色的高质量图像。该模型使用Stable Diffusion技术处理所有图像生成,确保内容与印度的多样性和活力相呼应。
前沿AI技术,您的智能工作助手。
Mistral AI 提供的 le Chat 是一个免费的生成性AI工作助手,旨在通过前沿的AI技术提升人类的工作效率和创造力。le Chat 结合了搜索、视觉、创意、编码等多种功能,为用户提供了一个多功能的智能平台。它不仅能够进行网络搜索并引用来源,还拥有创意画布、文档和图像理解、图像生成等功能,并且支持任务自动化。Mistral AI 的使命是将前沿AI技术交到用户手中,让用户决定如何利用这些高级AI能力。目前,所有这些功能都以免费试用的形式提供,未来将推出更高级的服务保证。
基于文本生成服装图像的AI模型
FLUX.1-dev LoRA Outfit Generator是一个文本到图像的AI模型,能够根据用户详细描述的颜色、图案、合身度、风格、材质和类型来生成服装。该模型使用了H&M Fashion Captions Dataset数据集进行训练,并基于Ostris的AI Toolkit进行开发。它的重要性在于能够辅助设计师快速实现设计想法,加速服装行业的创新和生产流程。
生成和交互控制开放世界游戏视频的扩散变换模型
GameGen-X是专为生成和交互控制开放世界游戏视频而设计的扩散变换模型。该模型通过模拟游戏引擎的多种特性,如创新角色、动态环境、复杂动作和多样事件,实现了高质量、开放领域的视频生成。此外,它还提供了交互控制能力,能够根据当前视频片段预测和改变未来内容,从而实现游戏玩法模拟。为了实现这一愿景,我们首先从零开始收集并构建了一个开放世界视频游戏数据集(OGameData),这是第一个也是最大的开放世界游戏视频生成和控制数据集,包含超过150款游戏的100多万个多样化游戏视频片段,这些片段都配有GPT-4o的信息性字幕。GameGen-X经历了两阶段的训练过程,包括基础模型预训练和指令调优。首先,模型通过文本到视频生成和视频续集进行预训练,赋予了其长序列、高质量开放领域游戏视频生成的能力。进一步,为了实现交互控制能力,我们设计了InstructNet来整合与游戏相关的多模态控制信号专家。这使得模型能够根据用户输入调整潜在表示,首次在视频生成中统一角色交互和场景内容控制。在指令调优期间,只有InstructNet被更新,而预训练的基础模型被冻结,使得交互控制能力的整合不会损失生成视频内容的多样性和质量。GameGen-X代表了使用生成模型进行开放世界视频游戏设计的一次重大飞跃。它展示了生成模型作为传统渲染技术的辅助工具的潜力,有效地将创造性生成与交互能力结合起来。
训练无关的区域提示扩散变换器模型
Regional-Prompting-FLUX是一种训练无关的区域提示扩散变换器模型,它能够在无需训练的情况下,为扩散变换器(如FLUX)提供细粒度的组合文本到图像生成能力。该模型不仅效果显著,而且与LoRA和ControlNet高度兼容,能够在保持高速度的同时减少GPU内存的使用。
革命性的AI模型,排名第一的人工智能分析工具。
Red Panda AI,也称为Recraft V3,是一个在人工智能分析领域排名第一的革命性AI模型。它超越了FLUX1.1、Midjourney和OpenAI等其他模型,在设计理解和视觉输出质量方面表现出色。Red Panda AI以其设计为中心的架构,提供了无与伦比的设计原则理解、视觉层次和构图能力。它能够智能地适应不同平台和用例,保持一致的品牌身份。产品的主要优点包括设计语言理解、风格一致性控制、上下文感知、专业设计质量、快速迭代和多格式掌握。
基于Transformer的实时开放世界AI模型
Oasis是由Decart AI开发的首个可玩、实时、开放世界的AI模型,它是一个互动视频游戏,由Transformer端到端生成,基于逐帧生成。Oasis能够接收用户键盘和鼠标输入,实时生成游戏玩法,内部模拟物理、游戏规则和图形。该模型通过直接观察游戏玩法学习,允许用户移动、跳跃、拾取物品、破坏方块等。Oasis被视为研究更复杂交互世界的基础模型的第一步,未来可能取代传统的游戏引擎。Oasis的实现需要模型架构的改进和模型推理技术的突破,以实现用户与模型的实时交互。Decart AI采用了最新的扩散训练和Transformer模型方法,并结合了大型语言模型(LLMs)来训练一个自回归模型,该模型可以根据用户即时动作生成视频。此外,Decart AI还开发了专有的推理框架,以提供NVIDIA H100 Tensor Core GPU的峰值利用率,并支持Etched即将推出的Sohu芯片。
首款实时生成式AI开放世界模型
Decart是一个高效的AI平台,提供了在训练和推理大型生成模型方面的数量级改进。利用这些先进的能力,Decart能够训练基础的生成交互模型,并使每个人都能在实时中访问。Decart的OASIS模型是一个实时生成的AI开放世界模型,代表了实时视频生成的未来。该平台还提供了对1000+ NVIDIA H100 Tensor Core GPU集群进行训练或推理的能力,为AI视频生成领域带来了突破性进展。
基于人工智能的图像生成模型
Stable Diffusion 3.5 Medium 是由 Stability AI 提供的一款基于人工智能的图像生成模型,它能够根据文本描述生成高质量的图像。这项技术的重要性在于它能够极大地推动创意产业的发展,如游戏设计、广告、艺术创作等领域。Stable Diffusion 3.5 Medium 以其高效的图像生成能力、易用性和较低的资源消耗而受到用户的青睐。目前,该模型在 Hugging Face 平台上以免费试用的形式提供给用户。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
基于文本生成高质量图像的AI模型
SD3.5-LoRA-Linear-Red-Light是一个基于文本到图像生成的AI模型,通过使用LoRA(Low-Rank Adaptation)技术,该模型能够根据用户提供的文本提示生成高质量的图像。这种技术的重要性在于它能够以较低的计算成本实现模型的微调,同时保持生成图像的多样性和质量。该模型基于Stable Diffusion 3.5 Large模型,并在此基础上进行了优化和调整,以适应特定的图像生成需求。
强大的图像生成模型
Stable Diffusion 3.5是Stability AI推出的一款图像生成模型,具有多种变体,包括Stable Diffusion 3.5 Large和Stable Diffusion 3.5 Large Turbo。这些模型可高度定制,能在消费级硬件上运行,并且根据Stability AI社区许可协议,可以免费用于商业和非商业用途。该模型的发布体现了Stability AI致力于让视觉媒体变革的工具更易于获取、更前沿、更自由的使命。
开源的去蒸馏FLUX模型
LibreFLUX是一个基于Apache 2.0许可的开源版本,提供了完整的T5上下文长度,使用注意力掩码,恢复了分类器自由引导,并去除了大部分FLUX美学微调/DPO。这意味着它比基础FLUX更不美观,但有潜力更容易地微调到任何新的分布。LibreFLUX的开发秉承开源软件的核心原则,即使用困难,比专有解决方案更慢、更笨拙,并且审美停留在21世纪初。
利用AI提升媒体处理和数字资产管理效率
ImageKit AI是一个结合了人工智能和生成式AI的媒体处理和数字资产管理平台。它通过AI技术,如图像扩展、智能裁剪、背景移除、添加阴影、通过文本提示生成图像等,帮助用户提升媒体内容的质量和处理效率。ImageKit AI的背景是满足现代数字媒体管理的需求,它通过AI技术简化了图像处理流程,降低了成本,并提高了内容的个性化和质量。产品定位于为企业提供高效、智能的媒体内容管理解决方案。
基于AI的动画图片生成平台
AnimeGen是一个利用先进AI模型将文本提示转化为动漫风格图片的在线工具。它通过复杂的算法和机器学习技术,为用户提供了一种简单快捷的方式来生成高质量的动漫图片,非常适合艺术家、内容创作者和动漫爱好者探索新的创作可能性。AnimeGen支持80多种语言,生成的图片公开显示并可被搜索引擎抓取,是一个多功能的创意工具。
免费AI动漫生成器,轻松创造独特的动漫风格图片
Free AI Anime Generator是一个基于人工智能技术的在线平台,它允许用户通过简单的点击操作生成高质量的动漫风格图片。这个平台利用先进的AI算法,使得即使是非专业人士也能轻松创造出独特的艺术作品。它不仅为动漫爱好者提供了一个实现创意的平台,也为艺术家和设计师提供了一个探索新创意的工具。该平台完全免费,易于使用,是动漫艺术创作领域的一次创新。
利用AI技术生成逼真的拥抱视频,让回忆温暖呈现。
AI Hug Video Generator是一个在线平台,使用先进的机器学习技术将静态照片转换成动态、逼真的拥抱视频。用户可以根据自己的珍贵照片创建个性化、充满情感的视频。该技术通过分析真实人类互动来创建真实感的数字拥抱,包括微妙的手势和情感。平台提供了用户友好的界面,无论是技术爱好者还是视频制作新手,都能轻松制作AI拥抱视频。此外,生成的视频是高清的,适合在任何平台上分享,确保在每个屏幕上都能呈现出色的效果。
一个受启发的创意工作流
Minionverse是一个基于AI的创意工作流,它通过使用不同的节点和模型来生成图像。这个工作流的灵感来自于一个在线的glif应用,并且提供了一个视频教程来指导用户如何使用。它包含了多种自定义节点,能够进行文本替换、条件加载、图像保存等操作,非常适合需要进行图像生成和编辑的用户。
小红书真实感风格模型,生成极度真实自然的日常照片
Flux_小红书真实风格模型是一款专注于生成极度真实自然日常照片的AI模型。它利用最新的人工智能技术,通过深度学习算法,能够生成具有小红书真实感风格的照片。该模型特别适合需要在社交媒体上发布高质量、真实感照片的用户,以及进行艺术创作和设计工作的专业人士。模型提供了多种参数设置,以适应不同的使用场景和需求。
使用文本生成定制视频和声音
Meta Movie Gen 是一个先进的媒体基础AI模型,它允许用户通过简单的文本输入来生成定制的视频和声音,编辑现有视频或将个人图像转换成独特的视频。这项技术代表了AI在内容创造方面的最新突破,为内容创作者提供了前所未有的创作自由度和效率。
AI模型测试与文本到图像提示集合平台
Prompt Llama是一个专注于文本到图像生成的AI模型测试平台,它允许用户收集高质量的文本提示,并测试不同模型在同一提示下的表现。该平台支持多种AI模型,包括但不限于midjourney、DALL·E 3、Firefly等,是AI图像生成领域研究者和爱好者的宝贵资源。
下一代多模态智能模型
Emu3是一套最新的多模态模型,仅通过下一个token预测进行训练,能够处理图像、文本和视频。它在生成和感知任务上超越了多个特定任务的旗舰模型,并且不需要扩散或组合架构。Emu3通过将多模态序列统一到一个单一的transformer模型中,简化了复杂的多模态模型设计,展示了在训练和推理过程中扩展的巨大潜力。
集成空间编织注意力,提升扩散模型的高保真条件
HelloMeme是一个集成了空间编织注意力的扩散模型,旨在将高保真和丰富的条件嵌入到图像生成过程中。该技术通过提取驱动视频中的每一帧特征,并将其作为输入到HMControlModule,从而生成视频。通过进一步优化Animatediff模块,提高了生成视频的连续性和保真度。此外,HelloMeme还支持通过ARKit面部混合形状控制生成的面部表情,以及基于SD1.5的Lora或Checkpoint,实现了框架的热插拔适配器,不会影响T2I模型的泛化能力。
© 2024 AIbase 备案号:闽ICP备08105208号-14