多件服装虚拟试穿和编辑技术
M&M VTO是一种混合搭配的虚拟试穿方法,它接受多张服装图片、服装布局的文本描述以及一个人的图片作为输入,输出是这些服装在指定布局下穿在给定人物身上的可视化效果。该技术的主要优点包括:单阶段扩散模型,无需超分辨率级联,能够在1024x512分辨率下混合搭配多件服装,同时保留和扭曲复杂的服装细节;架构设计(VTO UNet Diffusion Transformer)能够分离去噪和人物特定特征,实现高效的身份保留微调策略;通过文本输入控制多件服装的布局,专门针对虚拟试穿任务微调。M&M VTO在定性和定量方面都达到了最先进的性能,并为通过语言引导和多件服装试穿开辟了新的可能性。
使用AI技术在任何电商平台虚拟试穿衣物。
Visual Try-On Chrome Extension是一款Chrome浏览器插件,利用人工智能图像处理技术,让用户能够在任何电子商务网站上虚拟试穿衣物。该插件通过OpenAI GPT-4捕捉产品主图,上传用户图片至Cloudinary,使用Hugging Face上的Kolors模型进行AI处理,并将结果存储在浏览器缓存中以提高可用性。它保护用户隐私,不将个人数据或图片发送至服务器,仅在Hugging Face进行AI处理时例外。
一款简单高效的虚拟试穿扩散模型。
CatVTON是一款基于扩散模型的虚拟试穿技术,具有轻量级网络(总共899.06M参数)、参数高效训练(49.57M可训练参数)和简化推理(1024X768分辨率下<8G VRAM)。它通过简化的网络结构和推理过程,实现了快速且高效的虚拟试穿效果,特别适合时尚行业和个性化推荐场景。
从文本生成高保真3D服装资产
ClotheDreamer是一个基于3D高斯的文本引导服装生成模型,能够从文本描述生成高保真的、可穿戴的3D服装资产。它采用了一种新颖的表示方法Disentangled Clothe Gaussian Splatting (DCGS),允许服装和人体分别进行优化。该技术通过双向Score Distillation Sampling (SDS)来提高服装和人体渲染的质量,并支持自定义服装模板输入。ClotheDreamer的合成3D服装可以轻松应用于虚拟试穿,并支持物理精确的动画。
一种用于虚拟试穿任务的扩散模型,特别在真实世界场景中提高图像保真度和细节保存。
IDM-VTON是一种新型的扩散模型,用于基于图像的虚拟试穿任务,它通过结合视觉编码器和UNet网络的高级语义以及低级特征,生成具有高度真实感和细节的虚拟试穿图像。该技术通过提供详细的文本提示,增强了生成图像的真实性,并通过定制方法进一步提升了真实世界场景下的保真度和真实感。
虚拟试穿产品图像修复模型
Diffuse to Choose 是一种基于扩散的图像修复模型,主要用于虚拟试穿场景。它能够在修复图像时保留参考物品的细节,并且能够进行准确的语义操作。通过将参考图像的细节特征直接融入主要扩散模型的潜在特征图中,并结合感知损失来进一步保留参考物品的细节,该模型在快速推理和高保真细节方面取得了良好的平衡。
© 2024 AIbase 备案号:闽ICP备08105208号-14