需求人群:
["数据科学家:快速从网页中提取所需数据进行分析。","研究人员:用于收集特定主题的网络信息以支持研究工作。","开发者:集成到应用程序中,实现自动化数据抓取功能。","教育工作者:作为教学工具,展示如何使用AI进行网络数据提取。"]
使用场景示例:
从技术博客中提取所有文章标题和描述。
收集特定行业的市场报告和分析数据。
自动化抓取新闻网站的最新新闻标题。
产品特色:
使用SmartScraper类通过提示提取网站信息
支持Ollama模型进行信息提取
支持Docker容器化部署
支持OpenAI模型进行信息提取
支持Gemini模型进行信息提取
提供直接图实现,使用常见的网络抓取管道节点
输出为包含提取信息的字典格式
使用教程:
步骤1:安装Scrapegraph-ai库。
步骤2:设置所需的模型和配置,如Ollama或OpenAI模型。
步骤3:创建SmartScraperGraph实例,提供要提取信息的提示和网页源。
步骤4:调用run()方法执行信息提取。
步骤5:打印或处理提取结果,通常为字典格式。
步骤6:根据需要对提取的信息进行进一步的分析或处理。
浏览量:315
最新流量情况
月访问量
1794
平均访问时长
00:02:09
每次访问页数
3.69
跳出率
49.02%
流量来源
直接访问
48.66%
自然搜索
24.00%
邮件
0.10%
外链引荐
21.27%
社交媒体
5.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
11.66%
中国
11.14%
马来西亚
6.81%
美国
44.31%
基于AI的Python网络爬虫库,自动化提取网页信息。
ScrapeGraphAI是一个使用LLM(大型语言模型)和直接图逻辑来为网站、文档和XML文件创建抓取管道的Python网络爬虫库。用户只需指定想要提取的信息,库就会自动完成这项工作。该库的主要优点在于简化了网络数据抓取的过程,提高了数据提取的效率和准确性。它适用于数据探索和研究目的,但不应被滥用。
一站式数据处理系统,为大型语言模型提供高质量数据。
Data-Juicer 是一个一站式的多模态数据处理系统,旨在为大型语言模型(LLMs)提供更高质量、更丰富、更易消化的数据。它提供了一个系统化和可复用的数据处理库,支持数据与模型的协同开发,通过沙盒实验室实现快速迭代,并提供基于数据和模型的反馈循环、可视化和多维度自动评估等功能,帮助用户更好地理解和改进他们的数据和模型。Data-Juicer 正在积极更新和维护,定期增强和添加更多功能、数据配方和数据集。
通过GPT等大型语言模型与你的文档对话
IncarnaMind是一个开源项目,旨在通过大型语言模型(LLMs)如GPT、Claude和本地开源LLMs,实现与个人文档(PDF、TXT)的交互对话。该项目利用滑动窗口分块机制和集成检索器,提高查询效率,增强LLMs的准确性。它支持多文档对话问答,突破了单文档限制,并兼容多种文件格式和LLM模型。
任务感知型提示优化框架
PromptWizard是由微软开发的一个任务感知型提示优化框架,它通过自我演化机制,使得大型语言模型(LLM)能够生成、批评和完善自己的提示和示例,通过迭代反馈和综合不断改进。这个自适应方法通过进化指令和上下文学习示例来全面优化,以提高任务性能。该框架的三个关键组件包括:反馈驱动的优化、批评和合成多样化示例、自生成的思考链(Chain of Thought, CoT)步骤。PromptWizard的重要性在于它能够显著提升LLM在特定任务上的表现,通过优化提示和示例来增强模型的性能和解释性。
一个用于可视化和探索微软GraphRAG工具的网络工具。
GraphRAG Visualizer是一个基于网络的工具,旨在可视化和探索微软GraphRAG工具产生的数据。GraphRAG是微软开发的一种用于生成图结构数据的技术,GraphRAG Visualizer通过让用户上传parquet文件,无需额外软件或脚本即可轻松查看和分析数据。该工具的主要优点包括图形可视化、数据表格展示、搜索功能以及本地处理数据,确保数据安全和隐私。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
AI原生数据应用开发框架
DB-GPT是一个开源的AI原生数据应用开发框架,利用AWEL(Agentic Workflow Expression Language)和代理(agent)技术,简化了大型模型应用与数据的结合。它通过多模型管理、Text2SQL效果优化、RAG框架优化、多代理框架协作等技术能力,使企业和开发者能够以更少的代码构建定制化应用。DB-GPT在数据3.0时代,基于模型和数据库,为构建企业级报告分析和业务洞察提供了基础数据智能技术。
一个开放平台,用于日常使用的语言代理。
OpenAgents是一个开放平台,旨在使用户和开发者能够在日常生活中使用和托管语言代理。该平台已经实现了三种代理:数据分析的Data Agent、集成200+日常工具的Plugins Agent和自动网页浏览的Web Agent。OpenAgents通过优化的Web UI使普通用户能够与代理功能进行交互,同时为开发者和研究人员提供在本地设置上的无缝部署体验,为创新语言代理的构建和现实世界评估提供了基础。
基于ChatTTS模型的文本到语音转换项目
ChatTTS-Forge是一个围绕TTS生成模型ChatTTS开发的项目,实现了API服务器和基于Gradio的WebUI,能够提供全面的API服务,支持生成1000字以上的长文本,保持一致性,并通过内置32种不同风格进行风格管理。
代码生成任务的新型模型,测试准确率高于GPT-4 Turbo。
AutoCoder是一个专为代码生成任务设计的新型模型,其在HumanEval基准数据集上的测试准确率超过了GPT-4 Turbo(2024年4月)和GPT-4o。与之前的开源模型相比,AutoCoder提供了一个新功能:它可以自动安装所需的包,并在用户希望执行代码时尝试运行代码,直到确定没有问题。
专为LLM和RAG应用设计的高效网络爬虫
HyperCrawl是第一个为LLM(大型语言模型)和RAG(检索增强生成模型)应用设计的网络爬虫,旨在开发强大的检索引擎。它通过引入多种先进方法,显著减少了域名的爬取时间,提高了检索过程的效率。HyperCrawl是HyperLLM的一部分,致力于构建未来LLM的基础设施,这些模型需要更少的计算资源,并且性能超越现有的任何模型。
使用Kolmogorov-Arnold网络实现的预训练生成式变换器(GPTs)的语言模型
kan-gpt是一个基于PyTorch的Generative Pre-trained Transformers (GPTs) 实现,它利用Kolmogorov-Arnold Networks (KANs) 进行语言建模。该模型在文本生成任务中展现出了潜力,特别是在处理长距离依赖关系时。它的重要性在于为自然语言处理领域提供了一种新的模型架构,有助于提升语言模型的性能。
基于 LLM 大语言模型的知识库问答系统。
MaxKB 是一款基于 LLM 大语言模型的知识库问答系统,旨在成为企业的最强大脑。支持文档上传、自动爬取在线文档,智能问答交互体验好。支持快速嵌入到第三方业务系统。技术栈包括 Vue.js、Python/Django、Langchain、PostgreSQL/pgvector。
使用简单、原始的 C/CUDA 进行 LLM 训练
karpathy/llm.c 是一个使用简单的 C/CUDA 实现 LLM 训练的项目。它旨在提供一个干净、简单的参考实现,同时也包含了更优化的版本,可以接近 PyTorch 的性能,但代码和依赖大大减少。目前正在开发直接的 CUDA 实现、使用 SIMD 指令优化 CPU 版本以及支持更多现代架构如 Llama2、Gemma 等。
发现、分享和推广最好的OpenAI GPT
ProGPTs是一个专注于OpenAI GPT的平台,用户可以发现、分享和推广最好的GPT模型。平台提供了一个独家列表,展示了各种领域的顶尖GPT模型。用户可以提交自己的GPT模型,与超过7000名用户分享和推广。ProGPTs还提供了订阅功能,让用户可以及时了解到最新的GPT模型。无论你是开发者、研究者还是对GPT模型感兴趣的人,ProGPTs都是一个不可多得的资源。
嵌入AI的影子平台
Humanloop是一个用于构建和监控以大语言模型为基础的生产级应用的协作平台。它提供了一套完整的工具集,可以帮助开发者更快速地将AI从原型开发到生产环境,同时保证系统的可靠性。主要功能包括:提示工程,可以迭代和版本化提示,提高命中率;模型管理,支持各种模型并进行跟踪;内容评估,收集反馈并进行定量分析;以及合作平台,让非技术人员也可以参与到AI应用开发中。典型应用场景有构建聊天机器人、自动化客户支持以及生成营销内容等。Humanloop已经受到了成千上万开发者的青睐,被多家知名企业所使用。
Langroid是一个基于Python的轻量级LLM框架
Langroid是一个轻量级、可扩展和原则性的Python框架,可以轻松地构建基于LLM的应用程序。您可以设置代理,为它们配备可选组件(LLM、向量存储和方法),分配它们任务,并让他们通过交换消息协作解决问题。这个多代理范例的灵感来自Actor框架(但您不需要了解任何关于这个的知识!)。Langroid提供了一个全新的LLM应用程序开发方式,在简化开发人员体验方面进行了深思熟虑;它不使用Langchain。我们欢迎贡献--请参阅贡献文档以获取贡献想法。
在线学习Python、AI、大模型、AI写作绘画课程,零基础轻松入门。
Mo是一个专注于 AI 技术学习和应用的平台,旨在为用户提供从基础到高级的系统学习资源,帮助各类学习者掌握 AI 技能,并将其应用于实际项目中。无论你是大学生、职场新人,还是想提升自己技能的行业专家,Mo都能为你提供量身定制的课程、实战项目和工具,带你深入理解和应用人工智能。
一个AI驱动的数据科学团队,帮助用户更快地完成常见数据科学任务。
该产品是一个AI驱动的数据科学团队模型,旨在帮助用户以更快的速度完成数据科学任务。它通过一系列专业的数据科学代理(Agents),如数据清洗、特征工程、建模等,来自动化和加速数据科学工作流程。该产品的主要优点是能够显著提高数据科学工作的效率,减少人工干预,适用于需要快速处理和分析大量数据的企业和研究机构。产品目前处于Beta阶段,正在积极开发中,可能会有突破性变化。它采用MIT许可证,用户可以在GitHub上免费使用和贡献代码。
一个由LLM驱动的数据处理系统。
DocETL是一个强大的系统,用于处理和分析大量文本数据。它通过利用大型语言模型(LLM)的能力,能够自动优化数据处理流程,并将LLM与非LLM操作无缝集成。该系统的主要优点包括其声明式的YAML定义方式,使得用户可以轻松地定义复杂的数据处理流程。此外,DocETL还提供了一个交互式的playground,方便用户进行提示工程的实验。产品背景信息显示,DocETL在2024年12月推出了DocWrangler,这是一个新的交互式playground,旨在简化提示工程。价格方面,虽然没有明确标出,但从提供的使用案例来看,运行和优化数据处理流程的成本相对较低。产品定位主要是为需要处理大量文本数据并从中提取有价值信息的用户提供服务。
一个开源的交互式开发环境,用于构建和优化基于LLM的数据处理管道。
DocWrangler是一个开源的交互式开发环境,旨在简化构建和优化基于大型语言模型(LLM)的数据处理管道的过程。它提供即时反馈、可视化探索工具和AI辅助功能,帮助用户更容易地探索数据、实验不同操作并根据发现优化管道。该产品基于DocETL框架构建,适用于处理非结构化数据,如文本分析、信息提取等。它不仅降低了LLM数据处理的门槛,还提高了工作效率,使用户能够更有效地利用LLM的强大功能。
由Google Research开发的预训练时间序列预测模型。
TimesFM是一个由Google Research开发的预训练时间序列预测模型,用于时间序列预测任务。该模型在多个数据集上进行了预训练,能够处理不同频率和长度的时间序列数据。其主要优点包括高性能、可扩展性强以及易于使用。该模型适用于需要准确预测时间序列数据的各种应用场景,如金融、气象、能源等领域。该模型在Hugging Face平台上免费提供,用户可以方便地下载和使用。
一种用于检测机器修订文本的先进方法,通过模仿机器风格来提高检测准确性。
Imitate Before Detect 是一种创新的文本检测技术,旨在提高对机器修订文本的检测能力。该技术通过模仿大型语言模型(LLM)的风格偏好,能够更准确地识别出经过机器修订的文本。其核心优势在于能够有效区分机器生成和人类写作的细微差别,从而在文本检测领域具有重要的应用价值。该技术的背景信息显示,它能够显著提高检测的准确性,并且在处理开源LLM修订文本时,AUC值提升了13%,在检测GPT-3.5和GPT-4o修订文本时分别提升了5%和19%。其定位是为研究人员和开发者提供一种高效的文本检测工具。
一个开源AI模型微调与变现平台,助力AI初创企业、机器学习工程师和研究人员。
Bakery是一个专注于开源AI模型的微调与变现的在线平台,为AI初创企业、机器学习工程师和研究人员提供了一个便捷的工具,使他们能够轻松地对AI模型进行微调,并在市场中进行变现。该平台的主要优点在于其简单易用的界面和强大的功能,用户可以快速创建或上传数据集,微调模型设置,并在市场中进行变现。Bakery的背景信息表明,它旨在推动开源AI技术的发展,并为开发者提供更多的商业机会。虽然具体的定价信息未在页面中明确展示,但其定位是为AI领域的专业人士提供一个高效的工具。
高质量的数据集、工具和概念,用于大型语言模型的微调。
mlabonne/llm-datasets 是一个专注于大型语言模型(LLM)微调的高质量数据集和工具的集合。该产品为研究人员和开发者提供了一系列经过精心筛选和优化的数据集,帮助他们更好地训练和优化自己的语言模型。其主要优点在于数据集的多样性和高质量,能够覆盖多种使用场景,从而提高模型的泛化能力和准确性。此外,该产品还提供了一些工具和概念,帮助用户更好地理解和使用这些数据集。其背景信息包括由 mlabonne 创建和维护,旨在推动 LLM 领域的发展。
FlashInfer是一个用于大型语言模型服务的高性能GPU内核库。
FlashInfer是一个专为大型语言模型(LLM)服务而设计的高性能GPU内核库。它通过提供高效的稀疏/密集注意力机制、负载平衡调度、内存效率优化等功能,显著提升了LLM在推理和部署时的性能。FlashInfer支持PyTorch、TVM和C++ API,易于集成到现有项目中。其主要优点包括高效的内核实现、灵活的自定义能力和广泛的兼容性。FlashInfer的开发背景是为了满足日益增长的LLM应用需求,提供更高效、更可靠的推理支持。
一个用于多模型嵌入的图形库,支持多种模型和数据类型的可视化
vectrix-graphs 是一个强大的图形库,专注于多模型嵌入的可视化。它支持多种机器学习模型和数据类型,能够将复杂的数据结构以直观的图形形式展现出来。该库的主要优点在于其灵活性和扩展性,可以轻松集成到现有的数据科学工作流程中。vectrix-ai 团队开发了这个库,旨在帮助研究人员和开发者更好地理解和分析模型的嵌入结果。作为一个开源项目,它在 GitHub 上提供免费使用,适合各种规模的项目和团队。
用于生成LLM训练和推理的网站内容整合文本文件的工具
llmstxt-generator 是一个用于生成LLM(大型语言模型)训练和推理所需的网站内容整合文本文件的工具。它通过爬取网站内容,将其合并成一个文本文件,支持生成标准的llms.txt和完整的llms-full.txt版本。该工具由firecrawl_dev提供支持进行网页爬取,并使用GPT-4-mini进行文本处理。其主要优点包括无需API密钥即可使用基本功能,同时提供Web界面和API访问,方便用户快速生成所需的文本文件。
将本地文件转换为大型语言模型的结构化提示工具
CodebaseToPrompt 是一个简单工具,能够将本地目录转换为大型语言模型(LLM)的结构化提示。它帮助用户选择需要包含或忽略的文件,然后以可以直接复制到 LLM 中的格式输出,适用于代码审查、分析或文档生成。该工具的主要优点在于其交互性强、操作简便,并且能够在浏览器中直接使用,无需上传任何文件,确保了数据的安全性和隐私性。产品背景信息显示,它是由 path-find-er 团队开发,旨在提高开发者在使用 LLM 进行代码相关任务时的效率。
© 2025 AIbase 备案号:闽ICP备08105208号-14