需求人群:
"目标受众为开发者和编程人员,特别是那些需要处理大量代码和复杂项目的人员。Qwen2.5-Coder-7B通过提供强大的代码生成、推理和修复功能,帮助他们提高开发效率和代码质量。"
使用场景示例:
开发者使用Qwen2.5-Coder-7B自动补全代码,提高编码速度。
代码审查过程中,利用模型的代码推理能力发现潜在的代码问题。
在维护大型代码库时,使用模型的长上下文支持功能处理复杂的代码依赖关系。
产品特色:
代码生成:显著提升代码生成能力,帮助开发者快速实现代码逻辑。
代码推理:增强模型对代码逻辑的理解,提高代码审查和优化的效率。
代码修复:自动检测并修复代码中的错误,减少调试时间。
长上下文支持:支持长达128K令牌的上下文,适合处理大型代码库。
基于Transformers架构:采用先进的RoPE、SwiGLU、RMSNorm和Attention QKV偏置技术。
参数数量:拥有7.61B个参数,其中非嵌入参数为6.53B。
层数和注意力头数:共有28层,Q和KV的注意力头数分别为28和4。
使用教程:
1. 访问Hugging Face平台并搜索Qwen2.5-Coder-7B模型。
2. 阅读模型卡片,了解模型的详细信息和使用条件。
3. 根据项目需求,下载或直接在平台上部署模型。
4. 使用Hugging Face的Transformers库加载模型,并配置好环境。
5. 输入代码相关的查询或指令,模型将生成相应的代码或提供代码相关的推理。
6. 根据模型输出的结果,进行必要的调整和优化。
7. 在实际项目中应用生成或优化后的代码,提高开发效率。
8. 根据需要,对模型进行微调,以适应特定的开发环境或需求。
浏览量:3
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
Qwen2.5-Coder系列中的7B参数代码生成模型
Qwen2.5-Coder-7B是基于Qwen2.5的大型语言模型,专注于代码生成、代码推理和代码修复。它在5.5万亿的训练令牌上进行了扩展,包括源代码、文本代码接地、合成数据等,是目前开源代码语言模型的最新进展。该模型不仅在编程能力上与GPT-4o相匹配,还保持了在数学和一般能力上的优势,并支持长达128K令牌的长上下文。
Qwen2.5-Coder系列中的14B参数代码生成模型
Qwen2.5-Coder-14B-Instruct是Qwen2.5-Coder系列中的一个大型语言模型,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该模型通过扩展训练令牌到5.5万亿,包括源代码、文本代码接地、合成数据等,成为当前开源代码LLM的最新技术。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长达128K令牌的长上下文。
开源代码生成大型语言模型
Qwen2.5-Coder是一系列专为代码生成设计的Qwen大型语言模型,包含0.5、1.5、3、7、14、32亿参数的六种主流模型尺寸,以满足不同开发者的需求。该模型在代码生成、代码推理和代码修复方面有显著提升,基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码基础、合成数据等。Qwen2.5-Coder-32B是目前最先进的开源代码生成大型语言模型,其编码能力与GPT-4o相匹配。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长达128K令牌的长上下文。
7B参数的代码生成语言模型
Qwen2.5-Coder-7B-Instruct是Qwen2.5-Coder系列中的一款代码特定大型语言模型,覆盖了0.5、1.5、3、7、14、32亿参数的六种主流模型尺寸,以满足不同开发者的需求。该模型在代码生成、代码推理和代码修复方面有显著提升,基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码基础、合成数据等。Qwen2.5-Coder-32B已成为当前最先进的开源代码LLM,其编码能力与GPT-4o相匹配。此外,该模型还支持长达128K令牌的长上下文,并为实际应用如代码代理提供了更全面的基础。
代码生成与理解的大型语言模型
Qwen2.5-Coder-14B是Qwen系列中专注于代码的大型语言模型,覆盖了0.5到32亿参数的不同模型尺寸,以满足不同开发者的需求。该模型在代码生成、代码推理和代码修复方面有显著提升,基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码接地、合成数据等。Qwen2.5-Coder-32B已成为当前最先进的开源代码LLM,其编码能力与GPT-4o相匹配。此外,它还为现实世界应用如代码代理提供了更全面的基础,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。支持长达128K令牌的长上下文。
Qwen2.5-Coder系列中的指令调优0.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,通过扩展训练令牌到5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码LLM,其编码能力与GPT-4o相匹配。该模型不仅增强了编码能力,还保持了在数学和通用能力方面的优势,为实际应用如代码代理提供了更全面的基础。
Qwen2.5-Coder系列中的1.5B参数代码生成模型
Qwen2.5-Coder-1.5B是Qwen2.5-Coder系列中的一款大型语言模型,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该模型通过扩展训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,成为当前开源代码LLM中的佼佼者,编码能力媲美GPT-4o。此外,Qwen2.5-Coder-1.5B还强化了数学和通用能力,为实际应用如代码代理提供了更全面的基础。
Qwen2.5-Coder系列中的3B参数模型,专注于代码生成与理解。
Qwen2.5-Coder-3B是Qwen2.5-Coder系列中的一个大型语言模型,专注于代码生成、推理和修复。基于强大的Qwen2.5,该模型通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,实现了在代码生成、推理和修复方面的显著改进。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder-3B还为现实世界的应用提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列中参数最多的开源代码生成模型
Qwen2.5-Coder-32B是基于Qwen2.5的代码生成模型,拥有32亿参数,是目前开源代码语言模型中参数最多的模型之一。它在代码生成、代码推理和代码修复方面有显著提升,能够处理长达128K tokens的长文本,适用于代码代理等实际应用场景。该模型在数学和通用能力上也保持了优势,支持长文本处理,是开发者在进行代码开发时的强大助手。
开源代码生成大型语言模型
Qwen2.5-Coder是一系列针对代码生成优化的大型语言模型,覆盖了0.5、1.5、3、7、14、32亿参数的六种主流模型尺寸,以满足不同开发者的需求。Qwen2.5-Coder在代码生成、代码推理和代码修复方面有显著提升,基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码接地、合成数据等,成为当前最先进的开源代码LLM,其编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder还提供了更全面的基础,适用于现实世界中的代码代理等应用场景。
Qwen2.5-Coder系列中的0.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该系列模型通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,显著提升了编码能力。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,编码能力与GPT-4o相当。此外,Qwen2.5-Coder还为实际应用如代码代理提供了更全面的基础,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列中的1.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于Qwen2.5的强大能力,该模型在训练时使用了5.5万亿的源代码、文本代码基础、合成数据等,是目前开源代码生成语言模型中的佼佼者,编码能力与GPT-4o相媲美。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势,为实际应用如代码代理提供了更全面的基础。
Qwen2.5-Coder系列的3B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该系列模型通过增加训练令牌至5.5万亿,包括源代码、文本代码接地、合成数据等,显著提升了代码生成、推理和修复能力。Qwen2.5-Coder-3B是该系列中的一个模型,拥有3.09B参数,36层,16个注意力头(Q)和2个注意力头(KV),全32,768令牌上下文长度。该模型是目前开源代码LLM中的佼佼者,编码能力与GPT-4o相匹配,为开发者提供了一个强大的代码辅助工具。
Qwen2.5-Coder系列技术报告
Qwen2.5-Coder系列是基于Qwen2.5架构的代码特定模型,包括Qwen2.5-Coder-1.5B和Qwen2.5-Coder-7B两个模型。这些模型在超过5.5万亿个token的大规模语料库上继续预训练,并通过精细的数据清洗、可扩展的合成数据生成和平衡的数据混合,展现出令人印象深刻的代码生成能力,同时保持了通用性。Qwen2.5-Coder在包括代码生成、补全、推理和修复在内的多种代码相关任务上取得了超过10个基准测试的最新性能,并且一致性地超越了同等大小的更大模型。该系列的发布不仅推动了代码智能研究的边界,而且通过其许可授权,鼓励开发者在现实世界的应用中更广泛地采用。
新一代开放代码模型,提升编程效率。
Qwen2.5-Coder是Qwen2.5开源家族的一员,专注于代码生成、推理、修复等任务。它通过扩增大规模代码训练数据,提升了代码能力,同时保持了数学和通用能力。该模型支持92种编程语言,并在代码相关任务中取得了显著提升。Qwen2.5-Coder采用Apache 2.0许可,旨在加速代码智能的应用。
开源AI开发者助手,提升开发效率。
OpenHands是由All Hands AI开发的开源AI软件工程师,旨在帮助开发者处理积压的工作,让他们能够专注于解决难题、创造性挑战和过度工程化他们的配置文件。该产品在SWE-bench验证问题集中解决了超过一半的问题,是首个得分超过50%的AI工程师。此外,来自十几个学术机构的顶级代码生成研究人员每天都在帮助改进它。OpenHands在GitHub上以MIT许可证开源,拥有35k星标和190+贡献者。它与AI安全专家如Invariant Labs合作,以平衡创新与安全。
开启代码智能新篇章的模型
WaveCoder是由微软亚洲研究院开发的代码大语言模型,通过指令微调增强代码大语言模型的广泛性和多功能性。它在代码摘要、生成、翻译、修复等多个编程任务上展现出卓越的性能。WaveCoder的创新之处在于其使用的数据合成框架和两阶段指令数据生成策略,确保了数据的高质量和多样性。该模型的开源,为开发者提供了一个强大的编程辅助工具,有助于提高开发效率和代码质量。
高效编码的开源大型语言模型
Yi-Coder是一系列开源的代码大型语言模型(LLMs),在少于100亿参数的情况下提供最先进的编码性能。它有两种尺寸—1.5B和9B参数—提供基础和聊天版本,旨在高效推理和灵活训练。Yi-Coder-9B在GitHub的代码库级别代码语料库和从CommonCrawl筛选的代码相关数据上,额外训练了2.4万亿高质量token。Yi-Coder在多种编程任务中表现出色,包括基础和竞技编程、代码编辑和仓库级完成、长上下文理解以及数学推理。
为Cursor.sh IDE提供AI辅助编码的开源仪表板。
CursorLens是一个开源的仪表板,专为Cursor.sh IDE设计,用于记录AI代码生成、跟踪使用情况并控制AI模型(包括本地模型)。它允许用户在本地运行或使用即将推出的托管版本。该产品代表了编程领域中AI技术的应用,提供了代码生成、使用跟踪和模型控制等功能,极大地提高了开发效率和代码质量。
高性能的开源代码模型
Mamba-Codestral-7B-v0.1 是 Mistral AI Team 开发的基于 Mamba2 架构的开源代码模型,性能与最先进的基于 Transformer 的代码模型相当。它在多个行业标准基准测试中表现出色,提供高效的代码生成和理解能力,适用于编程和软件开发领域。
开源的多语言代码生成模型
CodeGeeX4-ALL-9B是CodeGeeX4系列模型的最新开源版本,基于GLM-4-9B持续训练,显著提升了代码生成能力。它支持代码补全、生成、代码解释、网页搜索、函数调用、代码问答等功能,覆盖软件开发的多个场景。在公共基准测试如BigCodeBench和NaturalCodeBench上表现优异,是参数少于10亿的最强代码生成模型,实现了推理速度与模型性能的最佳平衡。
开源代码语言模型,提升编程和数学推理能力。
DeepSeek-Coder-V2是一个开源的专家混合模型(Mixture-of-Experts, MoE),专为代码语言设计,其性能与GPT4-Turbo相当。它在代码特定任务上表现优异,同时在通用语言任务上保持了相当的性能。与DeepSeek-Coder-33B相比,V2版本在代码相关任务和推理能力上都有显著提升。此外,它支持的编程语言从86种扩展到了338种,上下文长度也从16K扩展到了128K。
下一代开源和双语大型语言模型
Yi-9B是01.AI研发的下一代开源双语大型语言模型系列之一。训练数据量达3T,展现出强大的语言理解、常识推理、阅读理解等能力。在代码、数学、常识推理和阅读理解等方面表现卓越,是同尺寸开源模型中的佼佼者。适用于个人、学术和商业用途。
集代码生成与执行于一体的开源系统
OpenCodeInterpreter是一个开源的代码生成系统,将代码生成、执行和迭代优化结合在一起。它利用包含6.8万段交互的Code-Feedback数据集进行训练,可以根据执行输出和人类反馈对代码进行动态优化。在HumanEval、MBPP等基准测试上的评估显示了它在代码生成方面的突出表现。具有33B参数量的OpenCodeInterpreter在HumanEval和MBPP的平均准确率可达83.2%,与GPT-4代码解释器的84.2%不相上下,并可通过人工反馈提升至91.6%。OpenCodeInterpreter缩小了开源代码生成模型与GPT-4等专有系统之间的差距。
开源代码生成模型
Code Llama 70B是一个大型开源代码生成语言模型,可以从自然语言提示或现有代码片段生成多种编程语言的代码。它基于175亿参数的通用语言模型Llama 2,经过专门针对代码生成任务的微调,可以高效准确地生成Python、C++、Java等语言的代码。Code Llama 70B在人工评估基准测试中取得了67.8的高分,性能超过了以往的开源模型,可与专利模型媲美。它强大的代码生成能力可以提升编程效率,降低编码门槛,启发更多创新应用。
开源、低成本的v0.dev替代品,可自定义且与GitHub无缝融合
vx.dev是一个开源的v0.dev替代品。它具有以下优点: - 低成本:通过提示工程技术,可以大大降低使用成本 - 易于定制:提供开源的提示,可以根据需求定制UI组件或代码风格 - GitHub无缝集成:生成的代码存储在GitHub上,内置版本控制、代码审查等功能 vx.dev的工作原理是,使用GPT-4模型根据事先定义好的提示来生成代码。主要成本在于输入和补全的标记数量。提示存储在prompts/ui-gen.md中,包含shadcn/ui、lucide和nivo图表的指令。通过删除不需要的组件指令,可以降低每次生成的API成本。 vx.dev可以轻松定制。用户可以基于现有提示进行修改,使用其他UI库或调整代码风格。生成的代码存储在GitHub上,拥有版本控制、协同等特性。私有仓库可以保证生成结果的可见性。
GPT文案生成
ProMind.AI是一款基于OpenAI GPT-3和GPT-4模型的内容生成工具,可生成推特、博客、LinkedIn帖子、YouTube脚本等。通过该工具,您可以修复代码错误、生成代码,并节省时间。ProMind.AI拥有强大的功能,可以帮助您提升写作效率。
© 2024 AIbase 备案号:闽ICP备08105208号-14