需求人群:
"该模型适用于需要快速、准确网页翻译的Firefox浏览器用户,以及希望参与翻译模型开发和优化的开发者。对于用户来说,它提供了无缝的翻译体验;对于开发者来说,它提供了一个开放的平台来改进翻译技术。"
使用场景示例:
Firefox浏览器用户在浏览外文网页时,使用该模型快速翻译网页内容。
开发者通过Firefox Translations Models的开源代码,改进翻译算法以支持更多语言。
企业用户利用该模型的开源特性,定制翻译模型以满足特定业务需求。
产品特色:
支持多种语言对的翻译,包括从英语到其他语言以及从其他语言到英语的双向翻译。
采用CPU优化技术,确保在不同设备上都能快速运行,无需依赖GPU加速。
通过Git LFS托管模型文件,便于管理和更新。
自动质量评估功能,使用BLEU和COMET等指标评估模型性能。
支持本地测试和CI集成,方便开发者进行模型训练和优化。
提供详细的模型训练和贡献指南,鼓励社区参与模型开发。
支持从Taskcluster下载模型,便于模型部署和更新。
模型分为开发版(dev)和生产版(prod),确保翻译质量和稳定性。
使用教程:
1. 访问GitHub仓库:https://github.com/mozilla/firefox-translations-models
2. 克隆仓库到本地:`git clone https://github.com/mozilla/firefox-translations-models.git`
3. 根据需要选择使用开发版(dev)或生产版(prod)模型。
4. 配置环境变量(如GCP_CREDS_PATH和AZURE_TRANSLATOR_KEY),以便使用完整的评估功能。
5. 使用`bash scripts/update-results.sh`运行本地模型评估。
6. 按照README中的指南,将模型部署到Firefox浏览器或Taskcluster。
7. 在Firefox浏览器中启用翻译功能,即可使用该模型进行网页翻译。
浏览量:7
最新流量情况
月访问量
5.03m
平均访问时长
00:06:29
每次访问页数
5.88
跳出率
37.10%
流量来源
直接访问
52.07%
自然搜索
32.84%
邮件
0.04%
外链引荐
12.88%
社交媒体
2.04%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.85%
德国
3.90%
印度
9.41%
俄罗斯
4.16%
美国
18.95%
为Firefox浏览器翻译功能优化的CPU加速神经机器翻译模型。
Firefox Translations Models 是由Mozilla开发的一组CPU优化的神经机器翻译模型,专为Firefox浏览器的翻译功能设计。该模型通过高效的CPU加速技术,提供快速且准确的翻译服务,支持多种语言对。其主要优点包括高性能、低延迟和对多种语言的支持。该模型是Firefox浏览器翻译功能的核心技术,为用户提供无缝的网页翻译体验。
开源字幕生成工具,实现内容无缝翻译。
subtitle是一个开源的字幕生成工具,利用先进的机器学习技术,为用户提供准确且自然的声音字幕。它支持多种语言,易于集成到现有的工作流程中,并允许用户在自己的服务器上自托管,增强控制权和隐私保护。
Qwen1.5系列首个千亿参数开源模型,多语言支持,高效Transformer解码器架构。
Qwen1.5-110B是Qwen1.5系列中规模最大的模型,拥有1100亿参数,支持多语言,采用高效的Transformer解码器架构,并包含分组查询注意力(GQA),在模型推理时更加高效。它在基础能力评估中与Meta-Llama3-70B相媲美,在Chat评估中表现出色,包括MT-Bench和AlpacaEval 2.0。该模型的发布展示了在模型规模扩展方面的巨大潜力,并且预示着未来通过扩展数据和模型规模,可以获得更大的性能提升。
Scira 是一个极简主义的 AI 驱动搜索引擎,帮助用户在互联网上查找信息。
Scira 是一个基于 AI 技术的搜索引擎,旨在通过强大的语言模型和搜索能力,为用户提供更高效、更精准的信息检索体验。它支持多种语言模型,如 Grok 2.0 和 Claude 3.5 Sonnet,并集成了 Tavily 等搜索工具,能够提供网页搜索、编程代码运行、天气查询等多种功能。Scira 的主要优点在于其简洁的界面和强大的功能集成,适合对传统搜索引擎不满意、希望借助 AI 提升搜索效率的用户。该项目开源免费,用户可以根据自己的需求进行本地部署或使用其提供的在线服务。
Phi-4-mini-instruct 是一款轻量级的开源语言模型,专注于高质量推理密集型数据。
Phi-4-mini-instruct 是微软推出的一款轻量级开源语言模型,属于 Phi-4 模型家族。它基于合成数据和经过筛选的公开网站数据进行训练,专注于高质量、推理密集型数据。该模型支持 128K 令牌上下文长度,并通过监督微调和直接偏好优化来增强指令遵循能力和安全性。Phi-4-mini-instruct 在多语言支持、推理能力(尤其是数学和逻辑推理)以及低延迟场景下表现出色,适用于资源受限的环境。该模型于 2025 年 2 月发布,支持多种语言,包括英语、中文、日语等。
一个专注于超大规模系统设计和优化的工具,提供高效解决方案。
The Ultra-Scale Playbook 是一个基于 Hugging Face Spaces 提供的模型工具,专注于超大规模系统的优化和设计。它利用先进的技术框架,帮助开发者和企业高效地构建和管理大规模系统。该工具的主要优点包括高度的可扩展性、优化的性能和易于集成的特性。它适用于需要处理复杂数据和大规模计算任务的场景,如人工智能、机器学习和大数据处理。产品目前以开源的形式提供,适合各种规模的企业和开发者使用。
开源的工业级普通话自动语音识别模型,支持多种应用场景。
FireRedASR 是一个开源的工业级普通话自动语音识别模型,采用 Encoder-Decoder 和 LLM 集成架构。它包含两个变体:FireRedASR-LLM 和 FireRedASR-AED,分别针对高性能和高效能需求设计。该模型在普通话基准测试中表现出色,同时在方言和英文语音识别上也有良好表现。它适用于需要高效语音转文字的工业级应用,如智能助手、视频字幕生成等。模型开源,便于开发者集成和优化。
一个开源项目,用于在浏览器中演示 AI 视频生成模型。
video-starter-kit 是一个强大的开源工具包,用于构建基于 AI 的视频应用。它基于 Next.js、Remotion 和 fal.ai 构建,简化了在浏览器中使用 AI 视频模型的复杂性。该工具包支持多种先进的视频处理功能,如多剪辑视频合成、音频轨道集成和语音支持等,同时提供了开发者友好的工具,如元数据编码和视频处理管道。它适用于需要高效视频生成和处理的开发者和创作者。
DeepSeek-R1-Distill-Qwen-32B 是一款高性能的开源语言模型,适用于多种文本生成任务。
DeepSeek-R1-Distill-Qwen-32B 是由 DeepSeek 团队开发的高性能语言模型,基于 Qwen-2.5 系列进行蒸馏优化。该模型在多项基准测试中表现出色,尤其是在数学、代码和推理任务上。其主要优点包括高效的推理能力、强大的多语言支持以及开源特性,便于研究人员和开发者进行二次开发和应用。该模型适用于需要高性能文本生成的场景,如智能客服、内容创作和代码辅助等,具有广泛的应用前景。
DeepSeek-R1 是一款高性能推理模型,支持多种语言和任务,适用于研究和商业应用。
DeepSeek-R1 是 DeepSeek 团队推出的第一代推理模型,通过大规模强化学习训练,无需监督微调即可展现出卓越的推理能力。该模型在数学、代码和推理任务上表现优异,与 OpenAI-o1 模型相当。DeepSeek-R1 还提供了多种蒸馏模型,适用于不同规模和性能需求的场景。其开源特性为研究社区提供了强大的工具,支持商业使用和二次开发。
一个开源AI模型微调与变现平台,助力AI初创企业、机器学习工程师和研究人员。
Bakery是一个专注于开源AI模型的微调与变现的在线平台,为AI初创企业、机器学习工程师和研究人员提供了一个便捷的工具,使他们能够轻松地对AI模型进行微调,并在市场中进行变现。该平台的主要优点在于其简单易用的界面和强大的功能,用户可以快速创建或上传数据集,微调模型设置,并在市场中进行变现。Bakery的背景信息表明,它旨在推动开源AI技术的发展,并为开发者提供更多的商业机会。虽然具体的定价信息未在页面中明确展示,但其定位是为AI领域的专业人士提供一个高效的工具。
一个用于多模型嵌入的图形库,支持多种模型和数据类型的可视化
vectrix-graphs 是一个强大的图形库,专注于多模型嵌入的可视化。它支持多种机器学习模型和数据类型,能够将复杂的数据结构以直观的图形形式展现出来。该库的主要优点在于其灵活性和扩展性,可以轻松集成到现有的数据科学工作流程中。vectrix-ai 团队开发了这个库,旨在帮助研究人员和开发者更好地理解和分析模型的嵌入结果。作为一个开源项目,它在 GitHub 上提供免费使用,适合各种规模的项目和团队。
高效的文本到音频生成模型
TangoFlux是一个高效的文本到音频(TTA)生成模型,拥有515M参数,能够在单个A40 GPU上仅用3.7秒生成长达30秒的44.1kHz音频。该模型通过提出CLAP-Ranked Preference Optimization (CRPO)框架,解决了TTA模型对齐的挑战,通过迭代生成和优化偏好数据来增强TTA对齐。TangoFlux在客观和主观基准测试中均实现了最先进的性能,并且所有代码和模型均开源,以支持TTA生成的进一步研究。
自动语音识别工具,提供词级时间戳和说话人识别
BetterWhisperX是一个基于WhisperX改进的自动语音识别模型,它能够提供快速的语音转文字服务,并具备词级时间戳和说话人识别功能。这个工具对于需要处理大量音频数据的研究人员和开发者来说非常重要,因为它可以大幅提高语音数据处理的效率和准确性。产品背景基于OpenAI的Whisper模型,但做了进一步的优化和改进。目前,该项目是免费且开源的,定位于为开发者社区提供更高效、更准确的语音识别工具。
即用即走的翻译、OCR工具
STranslate是一款集成了翻译和OCR功能的在线工具,它支持多种语言翻译,包括输入、划词、截图等多种翻译方式,并能同时显示多个服务的翻译结果,方便用户比较。OCR功能支持中英日韩等多种语言,基于PaddleOCR技术,提供快速准确的识别效果。此外,STranslate还支持多家翻译服务接入,并提供免费API。产品背景信息显示,STranslate由ZGGSONG开发,旨在为用户提供便捷、高效的翻译和OCR服务。
微软开源的视频分词器家族
VidTok是微软开源的一系列先进的视频分词器,它在连续和离散分词方面表现出色。VidTok在架构效率、量化技术和训练策略上都有显著的创新,提供了高效的视频处理能力,并且在多个视频质量评估指标上超越了以往的模型。VidTok的开发旨在推动视频处理和压缩技术的发展,对于视频内容的高效传输和存储具有重要意义。
多模态大型语言模型,提升文本、图像和视频数据处理能力。
Valley是由字节跳动开发的多模态大型模型(MLLM),旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,远超过其他开源模型,并在OpenCompass多模态模型评估排行榜上展现了出色的性能,平均得分67.40,位列已知开源MLLMs(<10B)中的前两名。
开源图像到视频生成模型
Ruyi-Mini-7B是由CreateAI团队开发的开源图像到视频生成模型,具有约71亿参数,能够从输入图像生成360p到720p分辨率的视频帧,最长5秒。模型支持不同宽高比,并增强了运动和相机控制功能,提供更大的灵活性和创造力。该模型在Apache 2.0许可下发布,意味着用户可以自由使用和修改。
让人工智能触手可及
Recursal AI致力于使人工智能技术对所有人开放,无论语言或国家。他们的产品包括featherless.ai、RWKV和recursal cloud。featherless.ai提供即时且无需服务器的Hugging Face模型推理服务;RWKV是一个下一代基础模型,支持100多种语言,推理成本降低100倍;recursal cloud则让用户能够轻松地微调和部署RWKV模型。这些产品和技术的主要优点在于它们能够降低AI技术的门槛,提高效率,并支持多语言,这对于全球化背景下的企业和开发者来说至关重要。
最强大的RWKV模型变体,打破多项英语基准测试。
Q-RWKV-6 32B Instruct Preview是由Recursal AI开发的最新RWKV模型变体,它在多项英语基准测试中超越了之前所有的RWKV、State Space和Liquid AI模型。这个模型通过将Qwen 32B Instruct模型的权重转换到定制的QRWKV6架构中,成功地用RWKV-V6注意力头替换了现有的Transformer注意力头,这一过程是由Recursal AI团队与RWKV和EleutherAI开源社区联合开发的。该模型的主要优点包括在大规模计算成本上的显著降低,以及对环境友好的开源AI技术。
快速高效的生成型AI模型
Command R7B是Cohere公司推出的一款高性能、可扩展的大型语言模型(LLM),专为企业级应用设计。它在保持较小模型体积的同时,提供了一流的速度、效率和质量,能够在普通的GPU、边缘设备甚至CPU上部署,大幅降低了AI应用的生产部署成本。Command R7B在多语言支持、引用验证检索增强生成(RAG)、推理、工具使用和代理行为等方面表现出色,特别适合需要优化速度、成本性能和计算资源的企业使用案例。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
自动解决软件开发问题的无代理方法
Agentless是一种无需代理的自动解决软件开发问题的方法。它通过定位、修复和补丁验证三个阶段来解决每个问题。Agentless利用分层过程定位故障到特定文件、相关类或函数,以及细粒度的编辑位置。然后,Agentless根据编辑位置采样多个候选补丁,并选择回归测试来运行,生成额外的复现测试以复现原始错误,并使用测试结果重新排名所有剩余补丁,以选择一个提交。Agentless是目前在SWE-bench lite上表现最佳的开源方法,具有82个修复(27.3%的解决率),平均每问题成本0.34美元。
高性能英文文本生成模型
OLMo-2-1124-7B-SFT是由艾伦人工智能研究所(AI2)发布的一个英文文本生成模型,它是OLMo 2 7B模型的监督微调版本,专门针对Tülu 3数据集进行了优化。Tülu 3数据集旨在提供多样化任务的顶尖性能,包括聊天、数学问题解答、GSM8K、IFEval等。该模型的主要优点包括强大的文本生成能力、多样性任务处理能力以及开源的代码和训练细节,使其成为研究和教育领域的有力工具。
一个基于Gradio的翻译代理Web界面
translation-agent-webui是一个基于Gradio的Web界面,用于Andrewyng翻译代理。它支持自动检测输入文本语言、标记化文本单词、突出显示翻译差异,并支持多种AI翻译API,包括groq、openai、cohere、ollama、together AI和Huggingface Inference API等。这个工具的主要优点是用户友好的界面和对多种语言的支持,使得翻译任务更加便捷和高效。产品背景信息显示,该工具是基于开源模型LlaMax3构建的,该模型在102种语言上有广泛的训练集。
腾讯开源的大型视频生成模型训练框架
HunyuanVideo是腾讯开源的一个系统性框架,用于训练大型视频生成模型。该框架通过采用数据策划、图像-视频联合模型训练和高效的基础设施等关键技术,成功训练了一个超过130亿参数的视频生成模型,是所有开源模型中最大的。HunyuanVideo在视觉质量、运动多样性、文本-视频对齐和生成稳定性方面表现出色,超越了包括Runway Gen-3、Luma 1.6在内的多个行业领先模型。通过开源代码和模型权重,HunyuanVideo旨在缩小闭源和开源视频生成模型之间的差距,推动视频生成生态系统的活跃发展。
高性能AI模型,提升推理任务能力
Skywork-o1-Open-PRM-Qwen-2.5-7B是由昆仑科技Skywork团队开发的一系列模型,这些模型结合了o1风格的慢思考和推理能力。这个模型系列不仅在输出中展现出天生的思考、规划和反思能力,而且在标准基准测试中显示出推理技能的显著提升。它代表了AI能力的战略进步,将一个原本较弱的基础模型推向了推理任务的最新技术(SOTA)。
© 2025 AIbase 备案号:闽ICP备08105208号-14