在东京构建世界级AI研究实验室
Sakana AI是一家位于日本东京的AI研究实验室,专注于创建基于自然启发智能的新类型基础模型。该实验室致力于开发先进的人工智能技术,以模拟自然界中的智能行为,推动AI领域的创新和发展。
先进的多模态模型,支持图像和文本理解。
Phi-3.5-vision是微软开发的轻量级、最新一代的多模态模型,基于包括合成数据和经过筛选的公开可用网站在内的数据集构建,专注于文本和视觉的高质量、密集推理数据。该模型属于Phi-3模型家族,经过严格的增强过程,结合了监督微调和直接偏好优化,以确保精确的指令遵循和强大的安全措施。
AI驱动的研究和报告工具
Profundo是一个AI驱动的研究和报告工具,旨在帮助用户自动化数据收集、分析和报告过程,以便用户可以专注于学习和决策制定。它使用尖端的AI技术,提高了数据收集和报告的效率,同时确保了研究的高准确性。Profundo的用户友好界面设计考虑了用户的需求,易于导航,并能与现有工具无缝集成。
大规模城市环境中的机器人模拟交互平台。
GRUtopia是一个为各种机器人设计的交互式3D社会模拟平台,它通过模拟到现实(Sim2Real)的范式,为机器人学习提供了一个可行的路径。平台包含100k精细标注的交互场景,可以自由组合成城市规模的环境,覆盖89种不同的场景类别,为服务导向环境中通用机器人的部署提供了基础。此外,GRUtopia还包括一个由大型语言模型(LLM)驱动的NPC系统,负责社交互动、任务生成和分配,模拟了具身AI应用的社交场景。
编码器自由的视觉-语言模型,高效且数据驱动。
EVE是一个编码器自由的视觉-语言模型,由大连理工大学、北京人工智能研究院和北京大学的研究人员共同开发。它在不同图像宽高比下展现出卓越的能力,性能超越了Fuyu-8B,并且接近模块化编码器基础的LVLMs。EVE在数据效率、训练效率方面表现突出,使用33M公开数据进行预训练,并利用665K LLaVA SFT数据为EVE-7B模型训练,以及额外的1.2M SFT数据为EVE-7B (HD)模型训练。EVE的开发采用了高效、透明、实用的策略,为跨模态的纯解码器架构开辟了新途径。
全切片基础模型,用于从真实世界数据中进行数字病理学分析。
Prov-GigaPath是一个用于数字病理学研究的全切片基础模型,它通过真实世界数据进行训练,旨在支持AI研究人员在病理学基础模型和数字病理幻灯片数据编码方面的研究。该模型由多位作者共同开发,并在Nature期刊上发表。它不适用于临床护理或任何临床决策制定目的,仅限于研究使用。
AI助力的快速洞察和全面研究助手
GPT Researcher是一个领先的自主研究代理,专为多代理框架设计,提供实时、准确和事实性的结果。它能够简化数据收集,通过一个函数调用提供可信赖、聚合和策划的结果。它支持超过100种不同的大型语言模型(LLMs),并且可以与任何搜索引擎协作,从Google到DuckDuckGo。用户可以轻松搜索本地文档和文件,并生成超过2000字的长篇报告,支持多种格式的导出,如PDF、Word、Markdown、JSON和CSV。
SceneScript:通过Reality Labs研究实现3D场景重建
SceneScript是Reality Labs研究团队开发的一种新型3D场景重建技术。该技术利用AI来理解和重建复杂的3D场景,能够从单张图片中创建详细的3D模型。SceneScript通过结合多种先进的深度学习技术,如半监督学习、自监督学习和多模态学习,显著提高了3D重建的准确性和效率。
© 2024 AIbase 备案号:闽ICP备08105208号-14