UIGEN-T1-Qwen-7b 是一个基于 Qwen2.5-Coder-7B-Instruct 的 70 亿参数模型,用于推理生成 HTML 和 CSS 基础的 UI 组件。
UIGEN-T1-Qwen-7b 是一个专注于 UI 推理生成的大型语言模型。它通过复杂的推理链路方法生成基于 HTML 和 CSS 的 UI 组件,能够为前端开发提供快速的布局生成方案。该模型基于 Qwen2.5-Coder-7B-Instruct 微调而成,专注于基本前端应用的生成,如仪表盘、登录页面和注册表单。其主要优点在于能够快速生成结构化的 HTML/CSS 代码,并通过推理生成符合设计原则的 UI 布局。该模型的主要应用场景是简化前端开发流程,提高开发效率,并为低代码/无代码工具提供支持。
OpenThinker-32B 是一款强大的开源推理模型,专为提升开放数据推理能力而设计。
OpenThinker-32B 是由 Open Thoughts 团队开发的一款开源推理模型。它通过扩展数据规模、验证推理路径和扩展模型大小来实现强大的推理能力。该模型在数学、代码和科学等推理基准测试中表现卓越,超越了现有的开放数据推理模型。其主要优点包括开源数据、高性能和可扩展性。该模型基于 Qwen2.5-32B-Instruct 进行微调,并在大规模数据集上训练,旨在为研究人员和开发者提供强大的推理工具。
s1是一个基于Qwen2.5-32B-Instruct微调的推理模型,仅用1000个样本进行训练。
s1是一个推理模型,专注于通过少量样本实现高效的文本生成能力。它通过预算强制技术在测试时进行扩展,能够匹配o1-preview的性能。该模型由Niklas Muennighoff等人开发,相关研究发表在arXiv上。模型使用Safetensors技术,具有328亿参数,支持文本生成任务。其主要优点是能够通过少量样本实现高质量的推理,适合需要高效文本生成的场景。
一个专注于整理最佳开源推理数据集的社区项目
Open Thoughts 是一个由 Bespoke Labs 和 DataComp 社区主导的项目,旨在整理高质量的开源推理数据集,用于训练先进的小模型。该项目汇集了来自斯坦福大学、加州大学伯克利分校、华盛顿大学等多所高校和研究机构的研究人员与工程师,致力于通过优质数据集推动推理模型的发展。其背景是当前推理模型在数学和代码推理等领域的应用需求日益增长,而高质量的数据集是提升模型性能的关键。该项目目前免费开放,主要面向研究人员、开发者以及对推理模型感兴趣的专业人士,其数据集和工具的开源性使其成为推动人工智能教育和研究的重要资源。
Dolphin R1是一个用于训练推理模型的数据集,包含80万条样本。
Dolphin R1是一个由Cognitive Computations团队创建的数据集,旨在训练类似DeepSeek-R1 Distill模型的推理模型。该数据集包含30万条来自DeepSeek-R1的推理样本、30万条来自Gemini 2.0 flash thinking的推理样本以及20万条Dolphin聊天样本。这些数据集的组合为研究人员和开发者提供了丰富的训练资源,有助于提升模型的推理能力和对话能力。该数据集的创建得到了Dria、Chutes、Crusoe Cloud等多家公司的赞助支持,这些赞助商为数据集的开发提供了计算资源和资金支持。Dolphin R1数据集的发布,为自然语言处理领域的研究和开发提供了重要的基础,推动了相关技术的发展。
OpenAI o3-mini 是 OpenAI 推出的最新高性价比推理模型,专为 STEM 领域优化。
OpenAI o3-mini 是 OpenAI 推出的最新推理模型,专为科学、技术、工程和数学(STEM)领域优化。它在保持低成本和低延迟的同时,提供了强大的推理能力,尤其在数学、科学和编程方面表现出色。该模型支持多种开发者功能,如函数调用、结构化输出等,并且可以根据需求选择不同的推理强度。o3-mini 的推出进一步降低了推理模型的使用成本,使其更适合广泛的应用场景。
DeepSeek-R1-Distill-Qwen-7B 是一个开源的推理模型,专注于数学、代码和推理任务。
DeepSeek-R1-Distill-Qwen-7B 是一个经过强化学习优化的推理模型,基于 Qwen-7B 进行了蒸馏优化。它在数学、代码和推理任务上表现出色,能够生成高质量的推理链和解决方案。该模型通过大规模强化学习和数据蒸馏技术,显著提升了推理能力和效率,适用于需要复杂推理和逻辑分析的场景。
DeepSeek-R1-Zero 是一款通过大规模强化学习训练的推理模型,无需监督微调即可实现卓越推理能力。
DeepSeek-R1-Zero 是由 DeepSeek 团队开发的推理模型,专注于通过强化学习提升模型的推理能力。该模型在无需监督微调的情况下,展现出强大的推理行为,如自我验证、反思和生成长链推理。其主要优点包括高效推理能力、无需预训练即可使用,以及在数学、代码和推理任务上的卓越表现。该模型基于 DeepSeek-V3 架构开发,支持大规模推理任务,适用于研究和商业应用。
DeepSeek-R1 是一款高性能推理模型,支持多种语言和任务,适用于研究和商业应用。
DeepSeek-R1 是 DeepSeek 团队推出的第一代推理模型,通过大规模强化学习训练,无需监督微调即可展现出卓越的推理能力。该模型在数学、代码和推理任务上表现优异,与 OpenAI-o1 模型相当。DeepSeek-R1 还提供了多种蒸馏模型,适用于不同规模和性能需求的场景。其开源特性为研究社区提供了强大的工具,支持商业使用和二次开发。
新一代最强推理模型
OpenAI o3模型是继o1之后的新一代推理模型,包括o3和o3-mini两个版本。o3在某些条件下接近于通用人工智能(AGI),在ARC-AGI基准测试中得分高达87.5%,远超人类平均水平。它在数学和编程任务中表现出色,在2024年美国数学邀请赛(AIME)中得分96.7%,在Codeforces评级中达到2727分。o3能够自我事实核查,通过“私人思维链”进行推理,提高答案的准确性。o3是首个使用“审议对齐”技术训练的模型,以符合安全原则。目前,o3模型尚未广泛可用,但安全研究人员可以注册预览o3-mini模型。o3 mini版将在1月底推出,之后不久推出o3完整版。
© 2025 AIbase 备案号:闽ICP备08105208号-14