MCVD

MCVD是一种用于视频生成、预测和插值的通用模型,使用基于分数的扩散损失函数生成新颖的帧,通过将高斯噪声注入当前帧并对过去和/或未来帧进行条件去噪,通过随机屏蔽过去和/或未来帧进行训练,实现无条件生成、未来预测、过去重建和插值四种情况的处理。该模型使用2D卷积U-Net,通过串联或时空自适应归一化对过去和未来帧进行条件处理,产生高质量和多样化的视频样本,使用1-4个GPU进行训练,能够扩展到更多通道。MCVD是一种简单的非递归2D卷积架构,能够生成任意长度的视频样本,具有SOTA的结果。

需求人群:

"视频生成、预测和插值"

使用场景示例:

电影特效生成

视频游戏开发

动画制作

产品特色:

视频生成

视频预测

视频插值

浏览量:33

s1785318098921236

打开站点

构建AI去赚钱
s1785341518918206
网站流量情况

最新流量情况

月访问量

386

平均访问时长

00:00:00

每次访问页数

1.01

跳出率

41.25%

流量来源

直接访问

41.74%

自然搜索

37.28%

邮件

0.18%

外链引荐

11.84%

社交媒体

7.24%

展示广告

0

截止目前所有流量趋势图

地理流量分布情况

美国

100.00%

类似产品

生成和交互控制开放世界游戏视频的扩散变换模型

GameGen-X是专为生成和交互控制开放世界游戏视频而设计的扩散变换模型。该模型通过模拟游戏引擎的多种特性,如创新角色、动态环境、复杂动作和多样事件,实现了高质量、开放领域的视频生成。此外,它还提供了交互控制能力,能够根据当前视频片段预测和改变未来内容,从而实现游戏玩法模拟。为了实现这一愿景,我们首先从零开始收集并构建了一个开放世界视频游戏数据集(OGameData),这是第一个也是最大的开放世界游戏视频生成和控制数据集,包含超过150款游戏的100多万个多样化游戏视频片段,这些片段都配有GPT-4o的信息性字幕。GameGen-X经历了两阶段的训练过程,包括基础模型预训练和指令调优。首先,模型通过文本到视频生成和视频续集进行预训练,赋予了其长序列、高质量开放领域游戏视频生成的能力。进一步,为了实现交互控制能力,我们设计了InstructNet来整合与游戏相关的多模态控制信号专家。这使得模型能够根据用户输入调整潜在表示,首次在视频生成中统一角色交互和场景内容控制。在指令调优期间,只有InstructNet被更新,而预训练的基础模型被冻结,使得交互控制能力的整合不会损失生成视频内容的多样性和质量。GameGen-X代表了使用生成模型进行开放世界视频游戏设计的一次重大飞跃。它展示了生成模型作为传统渲染技术的辅助工具的潜力,有效地将创造性生成与交互能力结合起来。

© 2024     AIbase    备案号:闽ICP备08105208号-14

隐私政策

用户协议

意见反馈 网站地图